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Residual Representations of Spacetime
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Spacetime is modelled by binary relations—by the classes of the automorphismsGL (C| 2)
of a complex two-dimensional vector space with respect to the definite unitary subgroup
U(2). In extension of Feynman propagators for particle quantum fields representing only
the tangent spacetime structure, global spacetime representations are given, formulated
as residues using energy–momentum distributions with the invariants as singularities.
The associated quantum fields are characterized by two invariant masses—for time
and position—supplementing the one mass for the definite unitary particle sector with
another mass for the indefinite unitary interaction sector without asymptotic particle
interpretation.

1. INTRODUCTION

Quantum theory starts with operations (Finkelstein, 1996). An experiment for
quantum structures probes a “diagonalization” of the operator under question, for
example, of a time and position translation, of a rotation, or of a charge transfor-
mation, with the eigenvalues as possible experimental results, for example, energy
and momenta, mass or spin, or a charge number, respectively. Therewith, I shall
take the radical point of view that all relevant mathematical structures and tools
used in quantum theories have to have an interpretation in terms of operations, of
monoids, groups, and algebras, especially of real Lie groups and Lie algebras, rea-
lized and represented as acting upon sets, especially upon complex vector spaces
with a reality-defining conjugation. Representation theory gives the irreducible
and—for linear structures—also the nondecomposable action spaces. Almost all
functions relevant for physics can be interpreted as arising from representation
structures (Vilenkin and Klimyk, 1991).

Physical events represent spacetime operations, for example, translations,
rotations, and boosts. A quantum-mechanical dynamics, implemented byi H
(Hamiltonian H with eigenvaluesE ∈ R) as basis for the time-translation Lie
algebraR, is a representation of the causal time groupD(1)= expR, irreducible
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for eit E ∈ U(1), for example, for the harmonic oscillator or for creation and an-
nihilation operators in quantum particle fields. In the Schr¨odinger picture the
time representations inU(1) are realized on a Hilbert space with the scalar pro-
duct (probability amplitudes) induced by the time representingU(1). The wave
functions come as position-translation-representation matrix elements, for exam-
ple, the scattering- and bound-state wave functionsψ(r ) in rotation symmetric
problems withrψ(r ) ∼ e±ir |Q|, e−r |Q| as compactU(1) and noncompactD(1)-
representations respectively of the radial translation monoidR+. In quantum me-
chanics the time translation eigenvalueiE (energyE) and the position translation
eigenvalueQ are in a unique correspondence: For example, for a constant poten-
tial V0 with − Q2

2 = E − V0, the scattering case is given byE > V0 with imagi-
nary eigenvalues±i |Q| and momentum|Q| whereas the bound states come with
E < V0 where|Q| cannot be interpreted as momentum.

In analogy to the dynamics for timeD(1)= expR, the representations2 of the
globally symmetric manifoldD(2)= expR4 as spacetime model (see Saller, 1997,
1999; also the detailed discussion given later), with the Minkowski translations
as tangent spaceR4, will be considered as possible candidates for a spacetime
dynamics:

time dynamics:rep D(1) withD(1) = GL (C| )/U(1),

spacetime dynamics:rep D(2) withD(2) ∼= GL (C| 2)/U(2).

The spacetime manifoldD(2)= D(12)× SD(2) contains, as factor for the causal
groupD(1), the rank 1 position manifoldSD(2)∼= SO0(1, 3)/SO(3) with another
Cartan subgroupSO0(1, 1)∼= expR. An independent realization of both factors
in the Cartan subgroupsD(1)× SO0(1, 1) of the rank 2 spacetime manifoldD(2)
is characterized by two continuous invariants.

For particles with massm, the energy–momenta (q0, Eq) as eigenvalues for
spacetime translations (x0, Ex) are on shell, that isq2 = m2. With Wigner (1939)
we know that particle quantum fields implement definite unitarily the spacetime
translation invariant with the massm2 = q2

0 − Eq2 as the translation eigenvalue.
In the following the off shell structures of a propagator, that is forq2 6= m2, will
be extended for a complete realization of rank 2 spacetimeD(2) with its two
noncompact invariants.

Representation matrix elements3 of a real Lie group are analytic functions on
this group

D : G→ C| , g(x) 7→ D(x)

for example,Exr i sinr for compact spinSU(2) or cosxmfor compact axial rotations
U(1) or both costm and t coshtm for noncompact timeD(1). According to the

2 irrep G andrep G denotes the (irreducible) representation classes of a groupG.
3 In the following the short “representation” can stand for the more correct “representation matrix
element(s).”
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Peter–Weyl theorem (Folland, 1995; Peter and Weyl, 1927), the span of the ir-
reducible representation matrix elements of a compact Lie group is dense in the
continuous functions on this group.

In a harmonic analysis, representation matrix elements of a group can be writ-
ten as Fourier transforms of distributions of their Lie algebra forms, for example,
of energies or angular momenta values, where the representation characterizing
invariants come as singularities, that is as poles of the distributions. This defines
the concept of residual representations. In the following, familiar algebraic repre-
sentation concepts (Helgason, 1978), such as weights, invariants, and Lie algebras
are translated into the language of residual representations.

In analogy to Lie groups such as the compactU(n) or the noncompactD(1),
symmetric spaces such as the noncompact position manifoldSD(2) and spacetime
D(2) also have linear representations that will be considered in analogy to the
representations of the time groupD(1). To construct residual representations of
the rank 2 spacetime manifoldD(2) distributions of the energy–momentaq ∈ R4

(tangent space forms) are used, supported by two invariant massesq2 ∈ {m2
0, m2

3}
characterizing the Cartan subgroupD(12)× SO0(1, 1)-representations for time
and position.

2. QUANTUM REPRESENTATIONS OF TIME

A dynamics is a representation of time (translation), realized in quantum me-
chanics by the quantization (anti-) commutators of the quantum-algebra-generating
operators. In the simplest cases of a harmonic oscillator with HamiltonianH =

p2

2M +m2M x2

2 for massM and frequencym, or of a free mass point withH = p2

2M
for frequencym→ 0, the time-dependent commutation relations of the dual quan-
tum algebra generating position–momentum pair (x, p) give the time representation
matrix elements

D(1) 3 et 7→ D(t) =
(

[i p, x] [x, x]

[p, p] [x,−i p]

)
(t)

=



 costm
i

Mm
sintm

i Mm sintm costm

 ∈ SO(2)

1
i t

M
0 1

 ∈ U(1, 1)

with the shorthand notation [a(s), b(t)]ε = [a, b]ε(t − s), ε = ±1, valid for all
matrix elements. Those representations arise from the complex irreducible and
nondecomposable time representations with creation and annihilation operator
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(u, u?) and nil- and eigenoperators (Saller, 1989) (b, g, b×, g×) respectively:

D(1) 3 et 7→


[u?, u]ε(t) = eitm ∈ U(1),(

[g×, b]ε [b×, b]ε
[g×, g]ε [b×, g]ε

)
(t) =

(
1 i t ν

0 1

)
eitm ∈ U(1, 1).

The quantization opposite commutators implement the Lie algebra of the basic
space endomorphisms, for example, the Hamiltonians mentioned previously. For
the harmonic oscillator theU(1)-induced Fock form〈· · ·〉F of the time dependent
anticommutators arises as time derivative of the quantization

(〈{i p, x}〉F 〈{x, x}〉F
〈{p, p}〉F 〈{x,−i p}〉F

)
(t) =

 i sintm
1

Mm
costm

Mm costm i sintm

 = 1

im

d

dt
D(t)

For the general quantum mechanical case withi H = i [ p2

2M + V(x)] as ba-
sis for the represented Lie algebra4 logD(1)∼= R, the timeD(1)-representation
matrix elements as the ground state values〈[a(s), b(t)]ε〉 = 〈[a, b]ε〉(t − s) of the
position–momentum commutators can be computed from the imaginary and time
translation antisymmetric position commutator

〈[x, x]〉(t) =
∫ ∞

0
dm2µ(m2)i

sintm

Mm

with a spectral measureµ(m2) for the time translation eigenvaluesm ∈ R (fre-
quencies, energies), for example,µ(m2) = δ(m2−m2

0) with m2
0 > 0 for oscillator

andm0 = 0 for free mass point, andp = M dx
dt〈(

[i p, x] [x, x]

[p, p] [x,−i p]

)〉
(t)

=
∫ ∞

0
dm2µ(m2)

(
costm

i

Mm
sintm

i Mm sintm costm

)
∈ rep SO(2)

In the case of a compact time development, that is, representations inU(1) orSO(2),
where there exists a basis of normalizable energy eigenvectors (for the oscillator
build by the monomials of creation and annihilation operator), the energy measure
is definiteµ(m2) ≥ 0.

4 The Lie group to Lie algebra transitionG 7→ logG is denoted with the logarithm log as covariant
functor.
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3. TIME AND POSITION TRANSLATIONS

3.1. The Lie Groups for the Translations

Translations are formalized by additive groups (vector spaces)Rn. It will be
convenient to introduce a distinguishing notation for the Lie group and the Lie
algebra involved, which have an isomorphic Abelian Lie group structure

Lie group D(1) = expR = {ex | x ∈ R}
Lie algebra R = logD(1) = {x | x ∈ R}

}
, expR ∼= R

The noncompact groupD(1) as universal covering group is locally isomor-
phic to the compact oneeiα ∈ U(1)= expiR ∼= R/Z with Lie algebra
logU(1)= iR.

The groupsU(1) andD(1) are, as real one-dimensional Lie groups, isomor-
phic to the axial rotationsSO(2) and the Procrustes5 dilatation groupSO0(1, 1)
respectively, that is the one-dimensional boosts

compact U(1) ∼= SO(2) =
{(

cosα sinα
−sinα cosα

) ∣∣∣∣α ∈ R}
noncompact D(1) ∼= SO0(1, 1)=

{(
coshx sinhx
sinhx coshx

) ∣∣∣∣ x ∈ R}
Those orthogonal groups with invariant bilinear forms of the two-dimensional
vector space they are acting upon, will be called self-dual representations6 of
U(1) andD(1) respectively with the obvious isomorphy (forSO(2) only in the
complex)

definite unitary:SO(2) 3
(

cosα i sinα
i sinα cosα

)
∼=
(

eiα 0
0 e−iα

)
∈ SU(2)

indefinite unitary:SO0(1, 1)3
(

coshx sinhx
sinhx coshx

)
∼=
(

ex 0
0 e−x

)
∈ SU(1, 1)

3.2. Real Operations Have Unitary Representations

The algebraic and topological completeness of the complex field C| allows the
definition of the transcendental numbere involving “exponential completeness”

5 Procrustes in the Greek mythology either shrinked or stretched his visitors—tall or short respectively—
to death.

6 For a group and a Lie algebra dual representations on finite dimensional dual vector spaces are related
to each other by inverse and negative transposition respectively.
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exp C| = C| \{0} and, therewith, the exponential transition from local linear struc-
tures (tangent vector spaces, Lie algebras) to global possibly nonlinear structures
(symmetric spaces, Lie groups). Therefore, I will consider representations on com-
plex vector spaces only. The complex representations of the physically arising
only real Lie groups or Lie algebras have to be unitary, definiteU(n) or indefinite
U(p, q), in order to recognize the realness also in the representation. Therewith,
the complex numbers are always used together with the canonical conjugation,
that is as the doubled real field C| = R⊕ iR.

Only for one complex dimension unitarity is unique, characterized by the
real Lie groupU(1)= expiR. The n unitarities forn complex dimensions go
with the signature: For example, in two dimensions theU(2)-conjugation of 2×
2-matrices can be written as the familiar conjugate transposition that exchanges
the elements of the skewdiagonal whereas theU(1, 1)-conjugation can be written
with an exchange of the diagonal elements

U(2)-conjugation:

(
α β

γ δ

)
↔
(
ᾱ γ̄

β̄ δ̄

)
U(1, 1)-conjugation:

(
α β

γ δ

)
↔
(
δ̄ β̄

γ̄ ᾱ

)
=
(

0 1

1 0

)(
ᾱ γ̄

β̄ δ̄

)(
0 1

1 0

)

3.3. Nildimensions for Noncompact Groups

Noncompact groups have reducible but nondecomposable representations
(Boerner, 1955; Saller, 1989; Shelobenko, 1958, 1959) where the representation
space cannot be spanned by eigenvectors only—there occur also nilvectors, that
is principal vectors that are not eigenvectors. The linear operators involved have a
Jordan triangular form with nontrivial off-diagonal entries.

The situation is characterized by the nondecomposable representations of the
groupD(1) with an eigenvaluem for ex 7→ eixm, which comes multiplied with an
automorphism of the representation spaceV ∼= C|1+N and can be written with a
nilcyclic matrix MN (nil-Hamiltonian), nilpotent to the powerN + 1

D(1) 3 ex 7→ eix(m+MN ) ∼= eixm



1 i x
(i x)2

2!
· · · (i x)N

N!

0 1 i x · · · (i x)N−1

(N − 1)!
...

...

0 · · · 0 1 i x

0 · · · 0 0 1


∈ GL (C| 1+N)
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(MN)N 6= 0, (MN)N+1 = 0, MN
∼=



0 1 0 · · · 0

0 0 1 · · · 0

...
...

0 0 · · · 0 1

0 0 · · · 0 0


The natural numberN is called the nildimension with 1+ N the dimension
of the nondecomposable representation. Irreducible representations have trivial
nildimensionN = 0 andM0 = 0. ForN ≥ 1 the conjugation is indefinite, that is
the group image is a subgroup ofU(1, 1),U(2, 1),U(2, 2), etc.

An example for nontrivial nildimensions in quantum mechanics is the radial
partψnL of the bound state wave functions in the hydrogen atom: It is a linear
combination of matrix elementsr 7→ r N e−

r
k of noncompact representations of the

radial translations with eigenvalue− 1
k , k = n+ L + 1

R+ 3 r 7→ DnL(r ) = rψnL(r ) ∼
(

2r

k

)L+1

L2L+1
n

(
2r

k

)
e−

r
k

with the Laguerre polynomialsL as combinations of radial powersr N .
An example for nontrivial nildimensions in quantum field theory is quan-

tum electrodynamics where the nonparticle components of theU(1)-gauge field,
which come in addition to the left and right circularly polarized particle degrees of
freedom (photons), that is the Coulomb force inducing degree of freedom and the
so-called gauge degree of freedom, are spacetime translation nilvectors (Saller,
1993, 1995), that is principal vectors that are no eigenvectors. The dichotomy
between particles and interaction degrees of freedom in the electromagnetic po-
tential reflects the compact and noncompact Cartan subgroups in the Lorentz group
SO(2)× SO0(1, 1)⊂ SO0(1, 3), represented definite unitarilySO(2)→ U(2) for
the photons and indefinite unitarilySO0(1, 1)→ U(1, 1) for Coulomb and gauge
degree of freedom. The nilpotency of the BRS-generator (Becchiet al., 1976)
with the powerN + 1= 2 has its origin in the time translation representation
D(1)→ U(1, 1) for the two nonparticle degrees of freedom withM1 = (0 1

0 0), the
nil-Hamiltonian that fulfillsM2

1 = 0.

4. THE SPACETIME REPRESENTATION STRUCTURE
OF QUANTUM PARTICLE FIELDS

Particle fields are appropriate for describing free particles; they implement
definite unitary representations of the Poincar´e Lie algebra (Mackey, 1968; Wigner,
1939) logSO0(1, 3) E⊕R4.



P1: VENDOR/GFU/LMD/GCY/LZX/GCZ P2: FTK/GCO/FOM/GCQ/FNV QC: GCQ

International Journal of Theoretical Physics [ijtp] PP131-301575 May 18, 2001 11:51 Style file version Nov. 19th, 1999

1216 Saller

A particle field, in the simplest case a hermitian scalar massive fieldΦ,m > 0,
with creation and annihilation operators (u, u?)

Φ(x) =
∫

d3q

(2π )3

√
m

q0

eixqu(Eq)+ e−i xqu∗(Eq)√
2

, q0 =
√

m2+ Eq2

[u?(Ep), u(Eq)] = (2π )3δ(Eq − Ep) = 〈{u?(Ep), u(Eq)}〉 = 〈u?(Ep)u(Eq)〉

is characterized by its quantization,7 causally supported and on shell

[Φ, Φ](x)

m
= i

s(x | m)

m
=
∫

d4q

(2π )3
ε(q0)δ(q2−m2) eixq = 0 for x2 < 0

and its Feynman propagator adding up the Fock form value of the quantization-
opposite commutator, also on shell

〈{Φ, Φ}〉F(x)

m
= C(x | m)

m
=
∫

d4q

(2π )3
δ(q2−m2) eixq

and theε(x0)-multiplied quantization (Gel’fand and Shilov, 1963) which also has
off shell contributions, forq2 6= m2

ε(x0)s(x | m)

m
= 1

π

∫
d4q

(2π )3

1

−q2
P+m2

eixq (principal value P)

〈{Φ, Φ}(x)± ε(x0)[Φ, Φ](x)〉F
m

= C(x | m)± i ε(x0)s(x | m)

m

= ± 1

iπ

∫
d4q

(2π )3

1

q2∓ io−m2
eixq

The harmonic contributions in the quantization

i
s(x | m)

m
=
∫

dq0

(2π )2
eix0q0ε(q0)ϑ

(
q2

0 −m2
) sinr

√
q2

0 −m2

r

7 The linear Minkowski spacetime parametrization is used in the notation for (anti)commutators
[ A(y), B(x)]± = [ A, B]±(x − y).
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and in the Feynman propagator

C(x | m)

m
± ε(x0)i s(x | m)

m

=
∫

dq0

(2π )2
eix0q0



[
ϑ
(
q2

0 −m2
) sinr

√
q2

0 −m2

r

± iϑ
(
q2

0 −m2
) cosr

√
q2

0 −m2

r

± iϑ
(
m2− q2

0

) e−r
√

m2− q2
0

r

]

show irreducible (definite unitary) time translation representation matrix
elements

R 3 x0 7→ e±i x0q0 ∈ U(1)

With the polar coordinate position translation decomposition

Ex ∈ R3 ∼= R+ × SO(3)/SO(2)

and the geometrical Kepler factor1r for the sphere surfaceSO(3)/SO(2)-
distribution, the position radial translation monoidr ∈ R+ is represented bysinr |Eq|

r
(spherical Bessel function) with sinr |Eq| as matrix element of a compact group
for the quantizations(x | m) and the Fock form functionC(x | m). In the propa-
gator contributionε(x0)s(x | m) there arise ther = 0-singular spherical Neumann
function cosr |Eq|

r that contains cosr |Eq| as a compact position translation representa-
tion matrix element. The additional off shell induced Yukawa contributions display
a representation matrix element of the radial position translations in a noncompact
(indefinite unitary) group

R+ 3 r 7→
{

e±ir |Eq| ∈ SO(2)
e−r |Q| ∈ SO0(1, 1)

The off shell contributions with the Yukawa interactions in the Feynman propagator
are no definite unitary representation matrix elements.

The time projection
∫

d3x of quantization and Feynman propagator gives
matrix elements for the representation of time translations in the rest system of a
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massive particle

x0 7→
∫

d3x

 C(x | m)
i s(x | m)

ε(x0)i s(x | m)


=
∫

d Eε(E)

 E
m

mε(x0)

 δ(E2−m2) eix0E =
 cosx0m

i sinx0m
i sin|x0|m


The analogue position projection

∫
dx0

Ex 7→ 2π
∫

dx0

im

 i s(x | m)
C(x | m)

ε(x0)i s(x | m)

 = ∫ d Q

2

 0
0

ϑ(Q2−m2)

 e−r |Q| =

 0
0

e−rm

r


is nontrivial only for the off shell contributions with radial translation representa-
tion matrix elemente−rm in a noncompact group.

Particle fields display in the quantizationss(x | m) and the Fock form
C(x | m), both on shellq2 = m2, matrix elements of definite unitary representa-
tions for the translations. The off shell contributions inε(x0)s(x | m) involve matrix
elements for indefinite unitary representation matrix elements for position trans-
lationsR3.

5. HOMOGENEOUS MODELS FOR TIME, POSITION,
AND SPACETIME

5.1. Exponentiating Time Translations

The time translations as a real one-dimensional vector spacex0 = x̄0 ∈ R are
isomorphic (as Lie group) to its exponentD(1)= expR, the time group. They
constitute the noncompact part (modulus) of the full complex group, given by the
phase classes

time: GL (C| )/U(1)= D(1)= expR ∼= R

5.2. Exponentiating Position Translations

In the semidirect Euclidean groupSO(3) E×R3, the position translations as
a real three-dimensional vector spaceR3 are isomorphic—as vector space with
rotation action—to the Lie algebra of the rotations logSO(3)∼= R3. In theSU(2)-
formulation, the rotationsSO(3) are represented by the adjoint action of its covering
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groupSU(2)

SO(3) E×R3 ∼ SU(2) E×R3, O. Ex ∼ u ◦ Ex Eσ ◦ u−1

with Ex Eσ =
(

x3 x1− i x2

x1+ i x2 −x3

)
u ∈ SU(2)⇒ Oa

b =
1

2
tr σ auσ bu−1, O ∈ SO(3)∼= SU(2)/{±12}

In the Pauli representation, the position translations are hermitian 2× 2-matrices,
that is representatives8 of the classes of all complex special matrices logSL(C| 2) ∼=
R3⊕ (iR)3 with respect to the special unitary ones logSU(2)∼= (iR)3

Ex Eσ = (Ex Eσ )? ∈∈ logSL(C| 2)/ logSU(2)

The global position manifold arises by exponentiation, isomorphic as symmetric
space to the classes of the Lorentz covering groupSL(C| 2) with respect to the
rotation covering groupSU(2)

position:SL(C| 2)/SU(2)∼= SD(2)= expR3 ∼= R3

The global symmetric space positionSD(2) and its tangent vector spaceR3 have
a manifold isomorphy only, expR3 6= (expR)3.

5.3. Exponentiating Spacetime Translations

In the Poincar´e groupSO0(1, 3) E×R4 the translationsR4 are not isomor-
phic to the Lie algebra of the Lorentz group logSO0(1, 3)∼= R6. In theSL(C| 2)-
formulation, the Lorentz transformationsSO0(1, 3) are represented by the conju-
gate adjoint action of its covering groupSL(C| 2)

SO0(1, 3) E×R4 ∼ SL(C| 2) E×R4, 3 . x ∼ s ◦ x ◦ s?

with x = xkσ
k =

(
x0+ x3 x1− i x2

x1+ i x2 x0− x3

)
s ∈ SL(C| 2)⇒ 3k

j =
1

2
tr σ ksσ̌j s

?, 3 ∈ SO0(1, 3)∼= SL(C| 2)/{±12}

with Weyl matricesσ k = (12, Eσ ) = σ̌k. In the Cartan representation, the spacetime
translations are hermitian 2× 2-matrices, that is representatives of the classes of
all complex matrices logGL (C| 2) ∼= R4⊕ (iR)4 with respect to the unitary ones
logU(2)∼= (iR)4

x = x? ∈∈ logGL (C| 2)/logU(2)

8 The funny double element symbol means a representative of a coset, that isg ∈∈ G/H ⇐⇒ g ∈ gH ∈
G/H .
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Global spacetime arises by exponentiation and is given by the classes of the full
groupGL (C| 2) with respect to the unitary phasesU(2), the moduli ofGL (C| 2)

spacetime:GL (C| 2)/U(2)∼= D(2)= expR4 ∼= R4

The causal structure of spacetime is the spectral order (Rickart, 1960) of theC∗-
algebra logGL (C| 2).

The noncompact symmetric spaceD(2) has, analogue to its compact counter-
partU(2) withU(2)= U(12) ◦ SU(2), a product decomposition into Abelian causal
time groupD(12) and real three-dimensional position (boost) manifoldSD(2)

D(2)= D(12)× SD(2), SD(2)∼= SL(C| 2)/SU(2)

Both symmetric spaces have real rank 2—also indicated in the notationU(2) and
D(2)—which reflects both the number of independent invariants and the dimension
of a maximal Abelian Cartan subgroup (flat submanifold; Helgason, 1978), arising
as factor of the two-sphereSO(3)/SO(2) in the polar decomposition

U(2) = U(12) ◦ SU(2)∼= U(1) ◦ SO(2)× SO(3)/SO(2)

D(2) = D(12)× SD(2)∼= D(1)× SO0(1, 1)× SO(3)/SO(2)

For the decomposition of the real four-dimensional tangent spaces (Lie algebra
for U(2)) with the Lie algebra of the Cartan subgroup, the sphere factor remains
unchanged

logU(2) = logU(12) ⊕ logSU(2)

∼= logU(1) ⊕ [log SO(2)× SO(3)/SO(2)]

logD(2) = logD(12) ⊕ logSD(2)

∼= logD(1) ⊕ [log SO0(1, 1)× SO(3)/SO(2)]

The representations of noncompact spacetimeD(2) and compact internal
groupU(2) are characterized by two invariants from a continuous spectrum for
a Cartan subgroupD(1)× SO0(1, 1)) and from a discrete spectrum for a Cartan
subgroupU(1) ◦ SO(2) respectively. Minkowski spacetimeR4 in the Cartan rep-
resentation byU(2)-hermitian 2× 2-matrices has the familiar conjugate adjoint
GL (C| 2)-transformation behavior to be compared with the adjoint action of the
compact groupU(2) on its Lie algebra logU(2)∼= (iR)4

g ∈ GL (C| 2), x =
(

x0+ x3 x1− i x2

x1+ i x2 x0− x3

)
∈ logD(2) ⇒ x 7→ g ◦ x ◦ g∗

u ∈ U(2), iα = i

(
α0+ α3 α1− iα2

α1+ iα2 α0− α3

)
∈ logU(2)⇒ iα 7→ u ◦ iα ◦ u∗

u∗ = u−1
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However, in contrast to the decomposition of theU(2)-Lie algebra into Abelian
U(12) and simpleSU(2)-contribution, compatible with the adjointU(2)-action, the
decomposition of spacetimeD(2) and its tangent space into time and position is
not compatible with the action of the Lorentz group

u ∈ U(2), logU(2) 3 iα = iα012+ i Eα Eσ ,

{
u ◦ iα012 ◦ u∗ ∈ logU(12)
u ◦ i Eα Eσ ◦ u∗ ∈ logSU(2)

s ∈ SL(C| 2), logD(2) 3 x = x012+ Ex Eσ
in general

{
s ◦ x012 ◦ s∗ /∈ logD(12)
s ◦ Ex Eσ ◦ s∗ /∈ logSD(2)

Both symmetric spaces are parametrizable by exponentiating the tangent
space, for example, in the polar Cartan decomposition

logU(2) 3 iα = u

( Eα
|Eα|
)
◦ i (α012+ |Eα|σ3) ◦ u∗

( Eα
|Eα|
)

⇒ expiα = u

( Eα
|Eα|
)
◦ ei (α012+|Eα|σ3) ◦ u∗

( Eα
|Eα|
)
∈ U(2)

logD(2) 3 x = u

( Ex
r

)
◦ (x012+ rσ3) ◦ u∗

( Ex
r

)
, r = |Ex|

⇒ expx = u

( Ex
r

)
◦ ex012+rσ3 ◦ u∗

( Ex
r

)
∈ D(2)

The diagonalization ofD(2) andU(2) with the sphere operations

u

( Ex
r

)
=

 cos
θ

2
−e−iϕ sin

θ

2

eiϕ sin
θ

2
cos

θ

2

 ∈∈ SU(2)/U(1)∼= SO(3)/SO(2)

defines{iα0, i |Eα|} as Cartan coordinates for the internal group and{x0, r } (time
and radial translations) as Cartan coordinates for spacetime.

Similar to the local-global group isomorphism for timeR ∼= expR = D(1)
one has the manifold isomorphy for spacetimeR4 ∼= expR4 = D(2). Via their
embedment as future cones,D(1) andD(2) are parametrizable with tangent space
R andR4 coordinates

t ∈ R ⇒ D(1) 3 et = ε(s)s ∈ R+ with s ∈ R, s2 = e2t

x ∈ R4⇒ D(2) 3 ex = ε(y0)ϑ(y2)y ∈ (R4)+ with y ∈ R4,

{
y2

0 = e2x0

|Ey| = er

5.4. Time in Spacetime

A dynamics in quantum mechanics arises from representations of the time
groupD(1)∼= expR whose representation spaces are realized in the Schr¨odinger
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Table I. Embedding Time into Spacetime

Time Spacetime
D(1)= GL (C| )/U(1) ↪→ D(2)∼= GL (C| 2)/U(2)

Quantum theory Quantum mechanics↪→ Quantum fields
Cartan subgroup D(1) ↪→ D(1)× SO0(1, 1)
Full group GL (C| ) ↪→ GL (C| 2)
Tangent space (translations) R ↪→ R4

Future t = ε(t)t ↪→ x = ε(x0)ϑ(x2)x
R+ ∼= D(1) (R4)+ ∼= D(2)

Particles (states) D(1)→ U(1) ∼= D(1)→ U(1)
Interactions Not intrinsic SO0(1, 1)→ U(1, 1)

picture by wave functions depending on position translations. The quantum me-
chanical relevant time structure is a proper substructure of spacetime, modeled by
the homogeneous spaceD(2)∼= GL (C| 2)/U(2) and represented by quantum fields.
The quantum mechanical energy eigenstates for compactD(1)-representations are
embedded as spacetime particles. The strict future cone with dimension four in
flat spacetime being isomorphic to nonlinear spacetimeD(2) contains not only the
totally ordered one-dimensional causal subgroupD(1), it leaves room for a three-
dimensional position submanifoldSD(2) whose noncompact dilatationsSO0(1, 1)
characterize spacetime interactions. The particle contributions, unitarily represent-
ing D(1), have to be supplemented in relativistic quantum theories by nonparticle
ones to implement genuineSO0(1, 1)-representations. The nonparticle contribu-
tions are a genuine intrinsic feature of spacetimeD(2) without analogue in quantum
mechanics. There the interactions, such as the Coulomb potential for atoms, have
to be put in by hand (see Table I).

6. TWO CONTINUOUS INVARIANTS FOR
SPACETIME REPRESENTATIONS

Since Yukawa, the unification of a causal time development (characterized
by a particle massm0 ≥ 0) with a position interaction (characterized by a range
1

m3
, m3 ≥ 0) in one spacetime Klein–Gordon equation for anε(x0)-multiplied

quantization distribution with one massm≥ 0(
d2

dt2
+m2

0

)
ei |t |m0

im0
= 2δ(t)(

− ∂2

∂Ex2
+m2

3

)
e−rm3

2πr
= 2δ(Ex)

 ↪→ (∂2+m2)ε(x0)
s(x | m)

m

= 2δ(x) with m0 = m3 = m



P1: VENDOR/GFU/LMD/GCY/LZX/GCZ P2: FTK/GCO/FOM/GCQ/FNV QC: GCQ

International Journal of Theoretical Physics [ijtp] PP131-301575 May 18, 2001 11:51 Style file version Nov. 19th, 1999

Residual Representations of Spacetime 1223

seems to be an obvious relativistic bonus—all interactions can be interpreted as
particle induced.

Particle fields with a Dirac energy–momentum distribution in their quanti-
zation

i s(x | m) =
∫

d4q

(2π )3
ε(q0)mδ(q2−m2) eixq

give by position-integration-representation matrix elements of the Abelian time
groupD(1)∼= expR in SO(2)

D(1)→ C|

ex0 7→
∫

d3x is(x | m) =
∫

d E mε(E)δ(E2−m2) eix0E = i sinx0m

The appropriate distribution for a representation of the position symmetric
spaceSD(2)∼= expR3 arises from a derived energy–momentum Dirac distribution

i sdip(x | m)

m
= − d

dm2

i s(x | m)

m
=
∫

d4q

(2π )3
ε(q0)δ′(q2−m2) eixq

Time integration leads to a Dirac distribution for the invariant and toSD(2)-
representation matrix elements inSO0(1, 1)

SD(2)→ C|

e−Ex 7→ 4π
∫

dx0ε(x0)sdip(x | m) =
∫

d Q mδ(Q2−m2) e−r |Q| = e−rm

The Dirac energy–momentum distribution for time with characterizing sec-
ond order differential equation in contrast to the derived distribution for position
with characterizing fourth order differential equation(

d2

dt2
+m2

)
ei |t |m

im
= 2δ(t),

(
− ∂2

∂Ex2
+m2

)2 e−rm

4πm
= 2δ(Ex)

reflect the different dimensions 1 and 3 of the time groupD(1) and the position
manifoldSD(2) respectively.

The association of energy–momentum singularities to representation invari-
ants forD(1) (time) andSD(2) (position) respectively is blurred since a decompo-
sition of the spacetime tangent Minkowski translationsR4 3 x = 12x0+ Eσ Ex into
time and position translations is not compatible with the action of the Lorentz
groupSO0(1, 3). The Dirac distribution has also a nontrivial projection for the
positionSD(2) structure

2π
∫

dx0ε(x0)s(x | m) = m
e−rm

r
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and the derived Dirac distribution a nontrivial projection for timeD(1) represen-
tations ∫

d3x isdip(x | m) = i
sinx0m− x0m cosx0m

2m2

The position projection of the Dirac distribution leads to a Yukawa force which is
not a matrix element of anSD(2)-representation, but only of its tangent position
translationsR3. The time projection of the derived Dirac distribution leads to
matrix elements of reducible nondecomposableD(1)-representations.

Related to the two Cartan coordinates{x0, r } that reflect the rank 2 of the
noncompact homogeneous manifoldD(2), that is two Abelian subgroupsD(12)
(time) andSO0(1, 1) as a dilatation subgroup of the position manifoldSD(2), two
invariants{m2

0, m2
3} have to characterize theD(2)-representations. The definite

unitary representationsD(12) 3 ex012 7→ e±x0im0 ∈ U(1) are characterized by a
particle massm2

0. A second massm2
3 characterizes the indefinite unitary repre-

sentationSO0(1, 1)3 e±r 7→ e±rm3 ∈ SU(1, 1) with an interaction range1m3
and

without particle asymptotics. There is no group theoretical reason to identify
both scalesm2

0 = m2
3; in general, the representations of spacetimeD(2) come

with two different scales whose ratiom
2
3

m2
0

is a representation characteristic of a
physically important constant. The ratio of the characterizing invariants for par-
ticle and interaction should be seen in analogy with the relative normali-
zation of time and position translations (τ 2 0

0 −`213
) as given with the speed of light

c2 = `2

τ 2 .

7. RESIDUAL REPRESENTATIONS

Before the definition of residual representations in general their structure will
be exemplified in the familiar example of the compact and noncompact abelian
groupsU(1) andD(1).

7.1. Residual U(1)× D(1)-Representations

An irreducible representation of the complex Abelian group exp C| can be
written as residue of its eigenvalue by using the complex Lie algebra formsQ ∈ C|

exp C| 3 ez 7→ ezζ =
∮

d Q

2iπ

1

Q− ζ ezQ, ζ ∈ irrep exp C| ∼= C|

which, with the canonical conjugation, gives for the irreducibleU(1) andD(1)-
representations, necessarily inU(1)

U(1) 3 eiα 7→ eiαZ =
∫

dqδ(q − Z) eiαq =
∮

dq

2iπ

1

q − Z
eiαq ∈ U(1)

Z ∈ irrep U (1) ∼= Z
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D(1) 3 et 7→ etim =
∫

dqδ(q −m) eitq =
∮

dq

2iπ

1

q −m
eitq ∈ U(1)

im ∈ irrep D (1) ∼= iR

with the neutral representations forZ = 0 andm= 0 respectively. The integrations
for the compact and noncompact group are related to each other via the Lie algebras
and their forms by multiplication with the imaginary uniti

for compactU(1) (iα, q)↔ (t, iq) for noncompactD(1)

Measures of the integer winding numbersZ as invariants of the compact
groupU(1) lead to Fourier series as measuredU(1)-representations

µ : irrep U (1)→ R, Z 7→ µ(Z)

meas irrep U(1) 3 µ 7→ Dµ ∈ rep U(1)

U(1) 3 eiα 7→ Dµ(α) =
∑
Z∈Z

µ(Z) eiαZ

The continuous irreducible representation classes forD(1) characterized by imagi-
nary numbersim have Lebesque measuredm based real valued measures giving
rise to Fourier integrals as measuredD(1)-representations

µ : irrep D (1)→ R, m 7→ µ(m)

meas irrep D(1) 3 µ 7→ Dµ ∈ rep D(1)

D(1) 3 et 7→ Dµ(t) =
∫

dmµ(m) eitm

where also matrix elements of reducible nondecomposable representations may
occur by using derivatives with respect to the invariant

µ(m) =
∑

N=0,1,...

µN(m)

(
d

dm

)N

7.2. The Definition of Residual Representations

Residual representations are complex functions on a real finite dimensional
symmetric spaceG, for example, a Lie group, with tangent space (Lie algebra)
logG ∼= Rn, as given previously forU(1) andD(1) and in the following forSU(2)
andSL(C| 2) and generalized to the position manifoldSD(2) and the spacetime
manifoldD(2).

The equivalence classesirrep G of the irreducibleG-representations are char-
acterizable by invariants, taken from a rational spectrum for a compact and also
from a continuous spectrum for a noncompact Cartan subgroup. The weights
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(eigenvalues) for the symmetric spaceG are a submodule of the linear forms9 q ∈
(logG)T of the tangent spacex ∈ logG. The invariants{I1, . . . , Ir }, characteriz-
ing an irreducible representation, are related to multilinear tangent space forms
(monomials in the weights). Appropriate measuresdnq I (q) of the linear forms,
which can be written with a Lebesque measure basis and a distribution of the tan-
gent space forms (logG)T ∼= Rn lead to matrix elements of irreducible symmetric
space representations

I : Rn → R, q 7→ I (q)
D : measRn → irrep G, I 7→ DI

DI : G→ C| , g(x) 7→ DI (x) =
∫

dnq I (q) eixq

The complex generalized functionsI (q) have poles at the values for the invariants
characterizing an irreducible representation, the distributions come as quotients of
two polynomialsI (q) = PN (q)

PD (q) . DI is called a residual representation ofG with
I (q) a residual group distribution.

Measured representations for a symmetric space (Lie group)G integrate
irreducibleG-representations with a measuredr I µ(I ) of the invariants

µ : irrep G→ R, I 7→ µ(I )
D : meas irrepG→ rep G, µ 7→ Dµ

Dµ : G→ C| , g(x) 7→ Dµ(x) =
∫

dr I µ(I )DI (x)

The product in the algebra of the representation classesrep G is implemented
via the convolution of the distributions for the matrix elements of the product
representation

DI1 ⊗ DI2 = DI1∗I2

In the following, these general structures will be concretized for the groups
and symmetric spaces relevant for the spacetime modelD(2).

7.3. Residual SO(2)× SO0(1, 1)-Representations

The real Abelian groupSO(2)× SO0(1, 1) has its irreducible self-dual com-
plex representations in the two types of two-dimensional unitary groups, the defi-
nite unitarySU(2) or the indefinite unitarySU(1, 1)

SO(2)× SO0(1, 1)→
{

SO(2) ⊂ SU(2)
SO0(1, 1) ⊂ SU(1, 1)

e(iα+x)σ 3 7→ e(iαZ+xδ)σ 3

9 The linear forms (dual space) of a vector spaceV are denoted byVT .
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The unitary groupsSU(2) andSU(1, 1) define the weights (Z, δ) of the principal
(compact) and supplementary (noncompact) representations respectively.

The principalSO(2)× SO0(1, 1)-weights coincide with theU(1)× D(1)-
weightsZ× iR. An integer eigenvalue pair{±Z} characterizes a self-dualSO(2)-
representation

SO(2) 3
(

cosα i sinα
i sinα cosα

)
7→
(

cosαZ i sinαZ
i sinαZ cosαZ

)
∼=
(

eiαZ 0
0 e−iαZ

)
∈ SU(2)

leading to a quadratic natural number valued invariantZ2. An imaginary con-
tinuous eigenvalue pair{±im} characterizes a self-dual compactSO0(1, 1)-
representation

SO0(1, 1)3
(

coshx sinhx
sinhx coshx

)
7→
(

cosxm i sinxm
i sinxm cosxm

)
∼=
(

eixm 0
0 e−i xm

)
∈ SU(2)

with a continuous positive invariantm2 ≥ 0

weights SO(2)= {Z} ∼= Z, irrep SO(2)= {|Z|} ∼= IN0

weights(2,0)SO0(1, 1)= {im} ∼= iR, irrep (2,0)SO0(1, 1)= {m2} ∼= R+

The new realSO0(1, 1)-weightsm ∈ R (supplementary) in contrast to the
imaginary principal weightsim ∈ iR given earlier come for dimensionsn ≥ 2
with the possibility of indefinite unitary groups. A supplementarySO0(1, 1)-
representation is characterized by a real continuous eigenvalue pair{±m}

SO0(1, 1)3
(

coshx sinhx
sinhx coshx

)
7→
(

coshxm sinhxm
sinhxm coshxm

)
∼=
(

exm 0
0 e−xm

)
∈ SU(1, 1)

with a continuous negative definite invariant

weights(1,1)SO0(1, 1)= {m} = R, irrep (1,1)SO0(1, 1)= {−m2} ∼= R−

Residual representations inSO(2) (principal) with invariantsm2 ∈ R+
can be formulated by distributions with theq-integration deformed as prescri-
bed by q2∓ io, which for an undeformed integration gives singularities
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atm2± io = (|m| ± io)2

e±i |tm| =
∫

d1q [m2]0
±(q) eitq , [m2]0

±(q) = ± 1

iπ

|m|
q2∓ io−m2

ε(t)e±i |tm| =
∫

d1q [m2]1
±(q) eitq , [m2]1

±(q) = 1

iπ

q

q2∓ io−m2

for SO(2), SO0(1, 1)→ SU(2), m ∈ (Z, R)

Residual representations inSU(1, 1) (supplementary) with invariants−m2 ∈
R− are obtained from residual representations inSU(2) (principal) by the real–
imaginary exchange (i t , q)↔ (x, iq)

e−|xm| =
∫

d1q [−m2]0(q) e−i xq, [−m2]0(q) = 1

π

|m|
q2+m2

−ε(x)e−|xm| =
∫

d1q [−m2]1(q) e−i xq, [−m2]1(q) = 1

iπ

q

q2+m2

for SO0(1, 1)→ SU(1, 1), m ∈ R
In the transition from the compact to the noncompact representation structure the
invariant±i |m| has to be replaced by−|m|

for SO(2)⊂ SU(2) ± i |m| ↔ −|m| for SO0(1, 1)⊂ SD(2)

The matrix elements for the representations inSO(2) andSO0(1, 1) fulfill the
second order differential equations(

d2

dt2
+m2

)
e±i |tm| = ±2i |m|δ(t),

(
d2

dx2 −m2

)
e−|xm| = −2|m|δ(x)

The product representations arise by convolution—forSO(2) with equal type,
either+io or−io—with the supindices{1, 0} adding up modulo 2, for example,[

m2
1

]1
± ∗

[
m2

2

]1
± =

[
m2
+
]0
±[−m2

1

]1 ∗ [−m2
2

]1 = [−m2
+
]0
 |m+| = |m1| + |m2|

With the convolution the distributions

irrep SO(2) =
{

q 7→ [Z2]1
±(q) = 1

iπ

q

q2∓ io− Z2

∣∣∣∣ Z ∈ Z
}

irrep (2,0)SO0(1, 1)=
{

q 7→ [m2]1
±(q) = 1

iπ

q

q2∓ io−m2

∣∣∣∣ m ∈ R
}

irrep (1,1)SO0(1, 1)=
{

q 7→ [−m2]1(q) = 1

iπ

q

q2+m2

∣∣∣∣ m ∈ R
}
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generate the compact and noncompact self-dual Abelian representations respec-
tively. The neutral representations arise for trivial invariant.

7.4. Residual Representations for Spin SU(2)

If the compact groupSO(2) comes as Cartan subgroup in the special group
e−i Ex Eσ ∈ SU(2) with the Cartan polar decomposition

SU(2)∼= SO(2)× SO(3)/SO(2)

residual representations employ the formsEq ∈ R3 of the tangent Lie algebra
logSU(2) (angular momenta) with the singularities of the distributions determined
by the values of the invariant bilinear Killing formEq2 as singularity location of a
dipole

for SO(2)⊂ SU(2): e±ir |m| =
∫

d3q[0, m2]±(Eq) e−i ExEq

[0, m2]±(Eq) = ± 1

iπ2

|m|
(Eq2∓ io−m2)2

, m ∈ R

This scalar representation and similar integrals can be obtained by derivations
with respect to the invariantm2 and the Lie parameterEx from the in- and outgoing
spherical waves∫

d3q

2π2

1

Eq2∓ io−m2
e−i ExEq = e±ir |m|

r
, m ∈ R, Ex 6= 0

∂

∂m2
= 1

2|m|
∂

∂|m| ,
∂

∂Ex =
Ex
r

∂

∂r
,

(
∂2

∂Ex2
+m2

)
e±ir |m|

r
= 4πδ(Ex)

which, however, are noSU(2)-representation matrix elements because of the Lie
parameterEx = 0 singularity.

The scalar matrix elements fulfill fourth order differential equations(
∂2

∂Ex2
+m2

)2

e±ir |m| = ∓8π i |m|δ(Ex)

Vector valued distributions represent nontrivially the two-sphereSO(3)/SO(2)

−Ex
r

e±ir |m| =
∫

d3q[1, m2]±(Eq) e−i ExEq

=
∫

d3q

iπ2

Eq
(Eq2∓ io−m2)2

e−i ExEq, m ∈ R
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leading to the matrix elements of the defining Pauli representation∫
d3q [0, 1]±(Eq) e−i ExEq = e±ir∫
d3q [1, 1]±(Eq) e−i ExEq = −Ex

r
e±ir

↔ e−i Ex Eσ = 12 cosr − Eσ Ex
r

i sinr

The spherical dependenceExr replaces theε(x)-dependence forSO(2).
With the Lie algebra additive convolution product of the distributions for the

irreducible residualSU(2)-representations

irrep SU(2)=
{
Eq 7→ [1, m2]±(Eq) = 1

iπ2

Eq
(Eq2∓ io−m2)2

∣∣∣∣|m| = 2J ∈ IN0

}
involving the neutral representation for trivial invariantm= 0 one can combine
the matrix elements for all other representations, for example, the scalar ones with
|m1| + |m2| = |m+|

xa

r
e±ir |m1|δab

xb

r
e±ir |m2| = e±ir |m+|

[
1, m2

1

]
±

j ′=0∗ [1, m2
2

]
±(Eq) = [0, m2

+
]
±(Eq)

=
(

1

iπ2

)2∫
d3q1d3q2

qa
1(Eq2

1 ∓ io−m2
1

)2 δ(Eq1+ Eq2− Eq)δab
qa

2(Eq2
2 ∓ io−m2

2

)2
= ± 1

iπ2

|m+|(Eq2∓ io−m2+
)2

or for the adjoint representation

δab cos 2r + xaxb

r 2
(1− cos 2r )+ εabc

xc

r
sin 2r

which arises for|m+| = |m1| + |m2| = 2

xa

r
e±ir |m1| x

b

r
e±ir |m2| = xaxb

r 2
e±ir |m+|

[
1, m2

1

]
±

2J ′=2∗ [
1, m2

2

]
±(Eq) =

(
1

iπ2

)2∫
d3q1 d3q2

qa
1(Eq2

1 ∓ io−m2
1

)2
× δ(Eq1+ Eq2− Eq)

qa
2(Eq2

2 ∓ io−m2
2

)2
In general, the matrix elements ofSU(2)-representations come as products

of a homogeneous polynomial (spherical harmonics) of degree 2J ′ for the sphere
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SO(3)/SO(2)-representation and an expontential for the Cartan subgroupSO(2)
with winding numbers±2J{[ Ex

r

]2J ′

e±ir 2J

∣∣∣∣ 2J ′ ∈ IN0, 2J ∈ IN0

}
[ Ex

r

]0

= {1},
[ Ex

r

]1

=
{

xa

r

∣∣∣∣ a = 1, 2, 3

}
,

[ Ex
r

]2

=
{

xaxb

r 2
− δ

ab

3

}
, . . .

Matrix elements of measuredSU(2)-representations use real measures of the
irreducible representations classes

µ : irrep SU(2)→ R, 2J 7→ µ(4J2)

meas irrep SU(2) 3 µ 7→ Dµ
± ∈ rep SU(2)

with the functions on the spin groupSU(2)

SU(2) 3 ei Ex Eσ 7→ Dµ
±(Ex) =

∑
2 j=0,1,...

µ(4J2)
∫

d3q

iπ2

Eq
(Eq2∓ io− 4J2)2

e−i ExEq

= −Ex
r

∑
2 j=0,1,...

µ(4J2) e±ir 2J

7.5. Residual Representations for Position SD(2)

For the position manifolde−Ex Eσ ∈ SD(2) with the Cartan polar decompo-
sition

SD(2)∼= SO0(1, 1)× SO(3)/ SO(2)

residual representations use the tangent space forms (momentaEq ∈ R3) and, in
comparison toSU(2), the tangent space real–imaginary exchange for compact–
noncompact

for SU(2)

{
Lie algebra and forms (i Ex, Eq)↔ (Ex, i Eq)

invariant ± i |m| ↔ −|m|

}
for SD(2)

As for the Cartan subgroupSO0(1, 1) there exists two types: The compact
representationsSD(2)→ SU(2) (principal) withSO0(1, 1)→ SO(2) and the non-
compact onesSD(2)→ SU(1, 1) (supplementary) with faithful representations
SO0(1, 1)→ SO0(1, 1). Both are representations of the homogeneous position
manifold in a unitary group, definite or indefinite.
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From the Yukawa potential∫
d3q

2π2

1

Eq2+m2
e−Exi Eq = e−r |m|

r
, m ∈ R, Ex 6= 0(

∂2

∂Ex2
−m2

)
e−r |m|

r
= −4πδ(Ex)

which, by itself, is noSD(2)-representation matrix element because of theEx = 0
singularity, one obtains by derivations∂

∂m2 and ∂
∂Ex the scalar matrix elements,

trivially representing the sphereSO(3)/SO(2)

for SO0(1, 1)⊂ SD(2): e−r |m| =
∫

d3q[0,−m2](Eq) e−i ExEq

[0,−m2](Eq) = 1

π2

|m|
(Eq2+m2)2

, m ∈ R

and the fundamental noncompact residualSD(2)-representations using a vector
valued distribution

−Ex
r

e−r |m| =
∫

d3q[1,−m2](Eq) e−i ExEq =
∫

d3q

iπ2

Eq
(Eq2+m2)2

ei ExEq, m ∈ R

This has to be compared with the elements in the defining representation

e−Ex Eσ = 12 coshr − Eσ Ex
r

sinhr

The scalar matrix elements fulfill fourth order differential equations(
∂2

∂Ex2
−m2

)2

e−r |m| = 8π |m|δ(Ex)

(
∂2

∂Ex2
+m2

)2

e±ir |m| = ∓8π i |m|δ(Ex), m ∈ R

In contrast to the spin groupSU(2) where the representations of the com-
pact Cartan subgroupSO(2) and the sphereSO(3)/SO(2) go both with discrete
invariants 2J ′, 2J ∈ IN0, arising as degree of the spherical harmonics and as wind-
ing numbers, the continuous invariantm2 ∈ R+ of the noncompact Cartan group
SO0(1, 1)-representation in the case of the position manifoldSD(2) is taken from a
different spectrum as the discrete invariant 2J ′ ∈ IN0 for the sphereSO(3)/SO(2)-
representations. Again the convolution products of the distributions for the funda-
mental residualSD(2)-representations

irrep (1,1) SD(2) =
{
Eq 7→ [1,−m2](Eq) = 1

iπ2

Eq
(Eq2+m2)2

∣∣∣∣m ∈ R}
irrep (2,0) SD(2) =

{
Eq 7→ [1, m2]±(Eq) = 1

iπ2

Eq
(Eq2∓ io−m2)2

∣∣∣∣m ∈ R}
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define the matrix elements of theSD(2)-representations. The representations for
trivial invariantm= 0 will be called neutral.

Measured SD(2)-representations use real measures of the continuous
invariants

µ : irrep SD(2)→ R, m2 7→ µ(m2)

meas irrep SD(2) 3 µ 7→ Dµ ∈ rep SD(2)

with the functions on the position manifoldSD(2)

SD(2) 3 e−Ex Eσ 7→ Dµ(Ex)

=



∫ ∞
0

dm2µ(m2)
∫

d3q

iπ2

Eq
(Eq2+m2)2

e−i ExEq

= −Ex
r

∫ ∞
0

dm2µ(m2) e−r |m| for rep(1,1) SD(2)

and∫ ∞
0

dm2µ(m2)
∫

d3q

iπ2

Eq
(Eq2∓ io−m2)2

e−i ExEq

= −Ex
r

∫ ∞
0

dm2µ(m2) e±ir |m| for rep(2,0) SD(2)

The two integrations in measured representation matrix elements go over the
tangent space forms

∫
d3q and the invariants

∫∞
0 dm2 with the dimensions 3 and 1

of the symmetric spaceSD(2) and a Cartan subgroupSO0(1, 1) respectively. Matrix
elements of reducible nondecomposable representations occur by using derivatives
with respect to the invariant

µ(m2) =
∑

N=0,1,...

µN(m2)

(
d

dm2

)N

8. RESIDUAL REPRESENTATIONS OF SPACETIME

Matrix elements of representations of a symmetric space (Lie group) can be
formulated as residues for characterizing invariant singularities of their tangent
translation (Lie algebra) forms. For the groupsU(1), D(1), SU(2) and the position
manifold SD(2), as done in the former sections, this is only a reformulation of
known structures. Residual representations constitute a genuine formulation for
the rank 2 symmetric spacetimeD(2). Two values for the Lorentz invariant energy–
momentum squareq2 characterize the action of the causal groupD(1) and the
position manifoldSD(2).
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Representations of spacetime

D(2) = D(12)× SD(2)∼= D(12)× SO0(1, 3)/SO(3)

∼= D(12)× SO0(1, 1)× SO(3)/SO(2)

will be formulated as Fourier transforms of energy–momentum distributions, com-
patible with the action of the Lorentz groupSO0(1, 3) on the tangent Minkowski
spacetime. The two invariant masses characterizing the representations are imple-
mented via singularities.

The irreducible residual representation matrix elements of spacetimeD(2),
parametrizable with causal vectorsxϑ(x2) ∈ R4 in tangent Minkowski spacetime
where the two reflected points{±xϑ(x2)} and, equally, their representation images
have to be identified

D(2) 3 xϑ(x2) 7→ (
m2

0; 1,−m2
3

)
(x) =

∫
d4q

[
m2

0; 1,−m2
3

]
(q) eixq

involve a two factorial energy–momentum distribution

irrep D (2)

=
{

q 7→ [
m2

0; 1,−m2
3

]
(q) = 1

iπ3

2q(
q2

P−m2
0

)(
q2

P−m2
3

)2 ∣∣∣∣m0, m3 ∈ R
}

It describes the Lorentz compatible embedding for the representation of the two
D(2)-factors and involves a simple pole (particle singularity) for the compact
representation of a Cartan subgroup time

for D(12)→ SU(2):
1

q2
P−m2

0

with pole location forEq = 0: q2
0 = m2

0

and a dipole (interaction singularity) for the noncompact representation of the
position symmetric spaceSD(2) with Cartan subgroupSO0(1, 1)

for SD(2)⊃ SO0(1, 1)→ SU(1, 1):
1(

q2
P−m2

3

)2
with dipole location forq0 = 0: Eq2 = −m2

3

The two-sphereSO(3)/SO(2) nontrivially representing factor is given by{q j }3j=0
in the numerator.

The Fourier transform of a principal value distribution is the causal Fourier
transform of a Dirac distribution and vice versa∫

d4q

iπ

1

q2
P−m2

(
eixq

ε(x0) eixq

)
=
∫

d4q ε(q0)δ(q2−m2)

(
ε(x0) eixq

eixq

)
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The matrix elements of the measured spacetime representations asD(2)-
functions involve a measure for the two continuous invariants

µ : irrep D (2)→ R,
(
m2

0, m2
3

) 7→ µ
(
m2

0, m2
3

)
meas irrep D(2) 3 µ 7→ Dµ 3 rep D(2)

D(2) 3 xϑ(x2) 7→ Dµ(x)

=
∫ ∞

0
dm2

0 dm2
3µ
(
m2

0, m2
3

)∫ d4q

iπ3

2q(
q2

P−m2
0

)(
q2

P−m2
3

)2 eixq

TheD(2)-representations are different from the Lorentz compatible position
distributions of time representations as used for the quantization of the tangent
Minkowski spacetime particle fields (K¨allen–Lehmann representations; K¨allen,
1952; Lehmann, 1954), for example, for a spin1

2 massive particle in a Dirac
field

particle fields :
∫ ∞

0
dm2µ(m2)

∫
d4q

π3

i (γq + |m|)
q2−m2+ io

eixq, µ(m2) ≥ 0

with probability related spectral measureµ(m2) for the invariant of the definite
unitary representations of the spacetime translations.

From the Lorentz scalar spacetime distribution with a simple energy–
momentum pole one obtains

(∂2+m2)
∫

d4q

π3

1

q2
P−m2

eixq = −16πδ(x)

the derivatives ∂
∂m2 with respect to the invariant

∫
d4q

π3

0(2+ N)(
q2

P−m2
)2+N eixq =


∂

∂ x2

4

ϑ(x2)E0

(
x2m2

4

)
, N = −1(

∂

∂m2

)N

ϑ(x2)E0

(
x2m2

4

)
, N = 0, 1. . .

=


−δ
(

x2

4

)
+ ϑ(x2)m2E1

(
x2m2

4

)
, N = −1

ϑ(x2)

(
−x2

4

)N

EN

(
x2m2

4

)
, N = 0, 1,. . .
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and the derivative∂
∂x with respect to the Lie parameter

∫
d4q

iπ3

q0(3+ N)(
q2

P−m2
)3+N eixq

= x

2


(
∂

∂ x2

4

)N

ϑ(x2)E0

(
x2m2

4

)
, N = −1,−2(

∂

∂m2

)N

ϑ(x2)E0

(
x2m2

4

)
, N = 0, 1,. . .

= x

2



δ′
(

x2

4

)
−m2δ

(
x2

4

)
+ ϑ(x2)m4E2

(
x2m2

4

)
, N = −2

−δ
(

x2

4

)
+ ϑ(x2)m2E1

(
x2m2

4

)
, N = −1

ϑ(x2)

(
−x2

4

)N

EN

(
x2m2

4

)
, N = 0, 1,. . .

which involve the Bessel functionsJN with ξ ∈ R

EN

(
ξ2

4

)
= JN(ξ )(

ξ

2

)N =
(
− ∂

∂
ξ2

4

)N

J0(ξ ) =
∞∑

n=0

(− ξ2

4

)n
n!(N + n)!(

−ξ
2

4

)N

EN

(
ξ2

4

)
=
(
−ξ

2

)N

JN(ξ ) =
(
ξ2

4

)N(
∂

∂
ξ2

4

)N

J0(ξ )

The distributions for strictly negative nildimensionN, that is, with a Dirac
distribution on the light conex2 = 0, are no spacetimeD(2)-representation matrix
elements. One obtains for the irreducible spacetime representations theD(2)-
functions

xϑ(x2) 7→ (
m2

0; 1,−m2
3

)
(x)

=
∫

d4q

iπ3

2q(
q2

P−m2
0

)(
q2

P−m2
3

)2 eixq

= xϑ(x2)

m4
0E2

(
x2m2

0
4

)
−m4

3E2

(
x2m2

3
4

)
(
m2

0−m2
3

)2 +
m2

3E1

(
x2m2

3
4

)
m2

3−m2
0
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The neutral elements, either forSD(2) orD(1), are defined by trivial masses(
m2

0; 1, 0
)
(x) =

∫
d4q

iπ3

2q(
q2

P−m2
0

)(
q2

P

)2 eixq = xϑ(x2)E2

(
x2m2

0

4

)
(
0; 1,−m2

3

)
(x) =

∫
d4q

iπ3

2q

q2
P

(
q2

P−m2
3

)2 eixq = xϑ(x2)

[
−E2

(
x2m2

3

4

)

+ E1

(
x2m2

3

4

)]
(0; 1, 0)(x) =

∫
d4q

iπ3

2q(
q2

P

)3 eixq = x

2
ϑ(x2)

9. ASSOCIATED RESIDUAL DISTRIBUTIONS

Given a residual distributionI (q) = I0(q) for an irreducible representation
of a symmetric space (Lie group)G, singular distributions{IN(q)} using the same
pole locations, but with possibly different orders, are calledI -associated residual
distributions. The possibly different singularity orders of the associated distribu-
tions will be characterized by integer nildimensionsN ∈ Z.

Associated to the Dirac distribution for an irreducible Abelian group repre-
sentation are its derivatives{

δ(N)(m− q)|N = 0, 1,. . .
} {m ∈ Z for irrep U (1)

m ∈ R for irrep D (1)∫
dq δ(N)(m− q) eitq =

∮
dq

2iπ

0(1+ N)

(q −m)1+N
eitq = (i t )N eitm

For the self-dual Abelian groups one has as associated distributions for the compact
representations (always only where the0-functions are defined){

1

iπ

q 0(1+ N)

(q2∓ io−m2)1+N

}
with

{m ∈ Z for irrep SO(2)

m ∈ R for irrep (2,0) SO0(1, 1)

∫
dq

iπ

q 0(1+ N)

(q2∓ io−m2)1+N
e−i xq = −ε(x)

(
∂

∂m2

)N

e±i |xm|

=
{
−ε(x) e±i |xm|, ∓i

x

2|m| e±i |xm|, . . .

for N = 0, 1,. . .
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±
∫

dq

iπ

|m| 0(1+ N)

(q2∓ io−m2)1+N
e−i xq = |m|

(
∂

∂m2

)N e±i |xm|

|m|

=
{

e±i |xm|, −1∓ i |xm|
2m2

e±i |xm|, . . .

for N = 0, 1,. . .

and for the noncompactSO0(1, 1)-representations{
1

iπ

q 0(1+ N)

(q2+m2)1+N

}
with m ∈ R for irrep (1,1) SO0(1, 1)

∫
dq

iπ

q 0(1+ N)

(q2+m2)1+N
e−i xq = −ε(x)

(
− ∂

∂m2

)N

e−|xm|

=
−ε(x) e−|xm|, − x

2|m| e−|xm|, . . .

for N = 0, 1,. . .∫
dq

π

|m| 0(1+ N)

(q2+m2)1+N
e−i xq = |m|

(
− ∂

∂m2

)N e−|xm|

|m|

=
e−|xm|,

1+ |xm|
2m2

e−|xm|, . . .

for N = 0, 1,. . .

With respect to the sign of the nildimensionN the residual distributions are used
for

nondecomposable group representations⇐⇒ N ≥ 0
irreducible group representations ⇐⇒ N = 0
tangent representations (discussed later)⇐⇒ N ≤ 0

For compact groups strictly positive nildimensions cannot occur, they define no
functions on the group

for compact groupsN ≤ 0

Residual distributions with strictly negative nildimensionsN = −1,−2, . . . do
not lead toG-representation matrix elements. They arise only for groups where
the rank is strictly smaller than the dimension.

Associated to the dipole distribution of an irreducible representation of the
spin groupSU(2) and for compact representations of the position manifoldSD(2)
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are the following distributions{
1

iπ2

Eq 0(2+ N)

(Eq2∓ io−m2)2+N

}
with

{
m ∈ Z for irrep SU (2)

m ∈ R for irrep (2,0) SD(2)

∫
d3q

iπ2

Eq 0(2+ N)

(Eq2∓ io−m2)2+N
e−i ExEq = 2

Ex
r

∂

∂r

(
∂

∂m2

)1+N e±ir |m|

r

= −Ex
r

2
1∓ ir |m|

r 2
e±ir |m|, e±ir |m|, . . .

for N = −1, 0,. . .

±
∫

d3q

iπ2

|m| 0(2+ N)

(Eq2∓ io−m2)2+N
e−i ExEq = ∓ 2i |m|

(
∂

∂m2

)1+N e±ir |m|

r

=


∓2i |m|e

±ir |m|

r
, e±ir |m|,

−1∓ ir |m|
2m2

e±ir |m|, . . .

for N = −1, 0, 1,. . .

and to an irreducible noncompact positionSD(2)-representation{
1

iπ2

Eq 0(2+ N)

(Eq2+m2)2+N

}
with m ∈ R for irrep (1,1) SD(2)

∫
d3q

iπ2

Eq 0(2+ N)

(Eq2+m2)2+N
e−i ExEq = 2

Ex
r

∂

∂r

(
− ∂

∂m2

)1+N e−r |m|

r

= −Ex
r

2
1+ r |m|

r 2
e−r |m|, e−r |m|, . . .

for N = −1, 0,. . .∫
d3q

π2

|m| 0(2+ N)

(Eq2+m2)2+N
e−i ExEq = 2|m|

(
− ∂

∂m2

)1+N e−r |m|

r

=
2|m|e

−r |m|

r
, e−r |m|,

1+ r |m|
2m2

e−r |m|, . . .

for N = −1, 0, 1,. . .

The distributions withN = −1 lead to spherical wavese
±ir |m|

r and Yukawa po-
tentials e−r |m|

r and their derivatives which are noSU(2) andSD(2)-representation
matrix elements.
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The distributions associated with an irreducibleD(2)-representation include
as negative nildimension distributions

q0(3+ N0+ N3)(
q2

P−m2
0

)1+N0
(
q2

P−m2
3

)2+N3

⇒


q(

q2
P−m2

0

)(
q2

P−m2
3

) ,
q(

q2
P−m2

3

)2 , N0+ N3 = −1

q

q2
P−m2

0

,
q

q2
P−m2

3

, N0+ N3 = −2

10. RESIDUAL SUBREPRESENTATIONS

A representation of a symmetric space (Lie group)G contains representations
of subspaces (subgroups)H . How does this look for residual representations?

A residualG-representation with tangent space (Lie algebra) parametersx =
(xH , x⊥)

DI : G→ C| , g(x) 7→ DI (x) =
∫

dnq I (q) eixq

is projected to a residualH -representation by integration
∫

dn−sx⊥ over the com-
plementary space logG/H

DI
H : H → CI , h(xH ) 7→ DI

H (xH )

with DI
H (xH ) =

∫
dn−sx⊥
(2π )n−s

∫
dnq I (q) eixq =

∫
dsqH I (qH , 0) eixH qH

With the integration one picks up the Fourier components for trivial tangent space
forms (momenta)q⊥ = 0 of log G/H .

10.1. SO(2)× SO0(1, 1)-Subrepresentations in
Spin-Position-Representations

The SO(2)-subrepresentations in spinSU(2)-representations are given as
follows

irrep SU(2)−→ rep SO(2), d2x⊥ = d2x1,2∫
d2x⊥
4π

∫
d3q

iπ2

Eq 0(2+ N)

(Eq2∓ io−m2)2+N
e−i ExEq =

∫
dq

iπ

q 0(2+ N)

(q2∓ io−m2)2+N
e−i x3q

= −ε(x3)

(
∂

∂m2

)1+N

e±i |x3m|
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±
∫

d2x⊥
4π

∫
d3q

iπ2

|m| 0(2+ N)

(Eq2∓ io−m2)2+N
e−i ExEq = ±

∫
dq

iπ

|m| 0(2+ N)

(Eq2∓ io−m2)2+N
e−i x3q

= |m|
(
∂

∂m2

)1+N e±i |x3m|

|m|
and theSO0(1, 1)-subrepresentations of noncompact positionSD(2)-represen-
tations

irrep SD(2)−→ rep(1,1)SO0(1, 1)

∫
d2x⊥
4π

∫
d3q

iπ2

Eq 0(2+ N)

(Eq2+m2)2+N
e−i ExEq =

∫
dq

iπ

q 0(2+ N)

(q2+m2)2+N
e−i x3q

= −ε(x3)

(
− ∂

∂m2

)1+N

e−|x3m|

∫
d2x⊥
4π

∫
d3q

π2

|m| 0(2+ N)

(Eq2+m2)2+N
e−i ExEq =

∫
dq

π

|m| 0(2+ N)

(q2+m2)2+N
e−i x3q

= |m|
(
− ∂

∂m2

)1+N e−|x3m|

|m|
The vector dependenceExr for the sphere is projected to two valuesε(x3) ∈ {±1}
for the hemispheres.

10.2. Time and Position Subrepresentations in Spacetime Representations

The energy–momentum distribution used in the residual spacetime represen-
tations is the principal value part in the decomposition of a complex distribution
into imaginary and real part

± 1

iπ

q(
q2∓ io−m2

0

)(
q2

P−m2
3

)2 = ± 1

iπ

q(
q2

P−m2
0

)(
q2

P−m2
3

)2︸ ︷︷ ︸
spacetimeD(2)→ C|

+ 1(
m2

0−m2
3

)2 qδ
(
q2−m2

0

)
︸ ︷︷ ︸

tangent translationsR4→ C|

which is also the decomposition for the representation matrix elements of space-
timeD(2) and its tangent spaceR4. The integrated principal value part has causal
support whereas the integrated Dirac distribution for the particle pole gets both
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spacelike and causal support. The decomposition with respect to the two
singularities

1(
q2−m2

0

)(
q2−m2

3

)2
= 1(

m2
0−m2

3

)2 [ 1

q2−m2
0

− q2−m2
0(

q2−m2
3

)2]

= 1(
m2

0−m2
3

)2 ( 1

q2−m2
0

− 1

q2−m2
3

)
− 1

m2
0−m2

3

1(
q2−m2

3

)2
is not parallel with the representation of the factors inD(2)= D(12)× SD(2). The
projections to representation matrix elements of the manifold factors are given
by position integration for the causal groupD(12) and by time integration for the
position manifoldSD(2) with Cartan subgroupSO0(1, 1), that is by the Fourier
transforms for trivial momentaEq = 0 and trivial energyq0 = 0 respectively∫

d3x : irrep D (2)→ rep D(1)∫
dx0 : irrep D (2)→ rep SD(2)∫

d2x⊥ : rep SD(2)→ rep SO0(1, 1)

where one uses

∫
d3x

8π∫
dx0

2∫
d2x⊥
4π

∫
dx0

2


∫

d4q

iπ3

q0(3+ N)(
q2

P−m2
)3+N eixq

=
(
∂

∂m2

)2+N


ε(x0) cosx0m

2
Ex
r

1+ r |m|
r 2

e−r |m|

−ε(x3) e−|x3m|




∫
d3x

8π∫
dx0

2∫
d2x⊥
4π

∫
dx0

2


∫

d4q

π3

0(2+ N)(
q2

P−m2
)2+N eixq = −

(
∂

∂m2

)1+N



sin|x0m|
|m|

2
e−r |m|

r

e−|x3m|

|m|
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This leads for irreducible spacetime representations to∫
d3x

8π

(
m2

0; 1,−m2
3

)
(x) =

∫
dq0

iπ

q0(
q2

0P−m2
0

)(
q2

0P−m2
3

)2 eix0q0

= ε(x0)

[
cosx0m0− cosx0m3(

m2
0−m2

3

)2 + |x0| sin|x0m3|
2|m3|

(
m2

0−m2
3

)]

∫
dx0

2

(
m2

0; 1,−m2
3

)
(x)

=
∫

d3q

iπ2

Eq(Eq2+m2
0

)(Eq2+m2
3

)2 e−i ExEq

= −Ex
r

[
2

(1+ r |m0|) e−r |m0| − (1+ r |m3|) e−r |m3|

r 2
(
m2

0−m2
3

)2 + e−r |m3|

m2
0−m2

3

]
∫

d2x⊥
4π

∫
dx0

2

(
m2

0; 1,−m2
3

)
(x)

=
∫

dq

iπ

q(
q2+m2

0

)(
q2+m2

3

)2 e−i x3q

= −ε(x3)

[
e−|x3m0| − e−|x3m3|(

m2
0−m2

3

)2 + |x3| e−r |m3|

2|m3|
(
m2

0−m2
3

)]
The measure of the invariants for an irreducible spacetime representation

for D(2) : ρ
(
M2

0, M2
3

) = δ(M2
0 −m2

0

)
δ
(
M2

3 −m2
3

)
is projected to measures for the representation of the two factors. The timeD(12)-
subrepresentation with the measure

for D(12) : ρ0(m2) = δ
(
m2−m2

0

)− δ(m2−m2
3

)(
m2

0−m2
3

)2 + δ
′(m2−m2

3

)
m2

0−m2
3

contains matrix elements of reducible nondecomposable representations for the
nonparticle dipole atm2

3.
The linear combinations occurring in the positionSD(2)-projections of space-

timeD(2)-representations are matrix elements of measuredSD(2)-representations
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involving the difference of two Yukawa potentials

2
e−r |m0| − e−r |m3|

r
=
∫ m2

3

m2
0

dm2 e−r |m|

|m|

=
∫ ∞

0
dm2ϑ

(
m2−m2

0

)
ϑ
(
m2

3−m2
) e−r |m|

|m|
The measure for theSD(2)-subrepresentation reads

for SD(2) : ρ3(m2) = −ϑ
(
m2−m2

0

)
ϑ
(
m2

3−m2
)(

m2
0−m2

3

)2 + δ
(
m2−m2

3

)
m2

0−m2
3

11. RESIDUAL TANGENT DISTRIBUTIONS

The residual tangent distributions for an irreducible symmetric space (group)
representation will be defined by the associated distributions with a simple pole,
that is, for minimal negative nildimensionN ≤ 0, and a trivial invariant. They
arise as the inverse differential operators in the Lie algebra action representing
differential equations of motions.

The tangentR distributions for the Abelian groups have trivial nildimensions
N = 0 for the non–self-dual ones

logU(1):

logD(1):

}
δ(q) ∼= 1

2iπ

1

q
,
∮

dq

2iπ

1

q
eitq = 1

for the self-dual compact representations

logSO(2):

logSO0(1, 1):

}
1

iπ

q

q2∓ io
,
∫

d1q

iπ

q

q2∓ io
eitq = ε(t)

and for the self-dual noncompactSO0(1, 1)-representations

logSO0(1, 1):
1

iπ

q

q2+ o2
,
∫

d1q

iπ

q

q2+ o2
e−i xq = −ε(x)

For the nonabelian rank 1 spaces the residual tangentR3 distributions come
with nildimensionN = −1

logSU(2):

logSD(2):

}
1

iπ2

Eq
Eq2∓ io−m2

,
∫

d3q

iπ2

Eq
Eq2∓ io

e−i ExEq = −2
Ex
r 3

and in the noncompact case

logSD(2):
1

iπ2

Eq
Eq2+ o2

,
∫

d3

iπ2

Eq
Eq2+ o2

e−i ExEq = −2
Ex
r 3



P1: VENDOR/GFU/LMD/GCY/LZX/GCZ P2: FTK/GCO/FOM/GCQ/FNV QC: GCQ

International Journal of Theoretical Physics [ijtp] PP131-301575 May 18, 2001 11:51 Style file version Nov. 19th, 1999

Residual Representations of Spacetime 1245

They lead both to the Coulomb force with the Cartan subalgebra projection∫
d2x⊥
4π

2
Ex
r 3
= ε(x3)

The residual tangent spacetimeR4 distributions have nildimensionN0+ N3 = −2

logD(2):
1

iπ3

q

q2
P

,
∫

d4q

iπ3

q

q2
P

eixq = x

2
δ′
(

x2

4

)

with projections



∫
d3x

8π∫
dx0

2∫
d2x⊥
4π

∫
dx0

2


∫

d4q

iπ3

q

q2
P

eixq =


ε(x0)

2
Ex
r 3

ε(x3)



12. DEFINING REPRESENTATIONS FOR TIME, POSITION,
AND SPACETIME

Spacetime, particles, and interactions cannot be taken as separate concepts.
Spacetime is known via interacting particles and the interactions of particles can
be understood only in spacetime.

This connection will be translated into the mathematical language with the
concept of a defining representation, familiar from Lie groups. For example, the Lie
groupSU(n) is defined by the automorphisms of a vector spaceV ∼= C| n compatible
with a scalar product–the linear space and the operating group merge in the concept
of the defining representation.

In addition to one defining representation for some Lie groups there exist
fundamental representations that reflect the rank and the number of independent
invariants. For example, the Lie symmetrySU(r + 1) one hasr fundamental rep-
resentations whose highest weights are basic vectors for theZ-module with all
weights. The products of a defining representation may build the fundamental
ones, as in the case ofSU(n) via the totally antisymmetric Grassmann powers of
the defining vector space.

12.1. The Harmonic Oscillator—Defining a Compact Time

The irreducible timeD(1) representation in the groupU(1) as seen in the
quantization for creation and annihilation operators (u, u∗) of a harmonic Fermi
or Bose oscillator with frequencies±m ∈ R

D(1) 3 et 7→ eitm = [u∗, u]±(t) ∈ U(1)

defines a compact model for time with the invariant1
|m| as characteristic time unit.
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The adjoint action with the Hamiltonian as the represented Lie algebra basis
defines the time translations in the equations of motion10

H = m
[u, u∗]∓

2
⇒


du

dt
= [i H , u] = imu, u(t) = eitmu

du∗

dt
= [i H , u∗] = −imu∗, u∗(t) = e−i tmu∗

The operators areU(1)-isomorphic time orbits in the C|-isomorphic representation
spaces

u, u? : D(1)→ V, VT ∼= C|

The product representationseitm1 eitm2 = eit (m1+m2) generate the familiar
equidistant time weights (eigenvalues, frequencies) for the quantum oscillator –
{Zm | Z ∈ Z} for Bose and{Zm | Z = 0,±1} for Fermi – which, for the states,
are projected on the positive values.

12.2. The Exponential Potential—Defining a Noncompact Position

An indefinite unitary representation of the noncompact Procrustes dilatation
groupSO0(1, 1) for dual operators (d, d∗) of Fermi or Bose type with eigenvalues
±m ∈ R

SO0(1, 1)3
(

e−x 0
0 ex

)
7→
(

e−xm 0
0 exm

)

=
(

[d∗, d]± [d, d]±

[d∗, d∗]± ±[d, d∗]±

)
(x) ∈ SU(1, 1)

defines a faithful model for the position space Cartan subgroupSO0(1, 1) with the
invariant 1

|m| as characteristic length unit.
The translations are implemented with the basis

D = im
[d, d∗]∓

2
⇒


dd

dx
= [iD , d] = −md, d(x) = e−xmd

dd∗

dx
= [iD , d∗] = md∗, d∗(x) = exmd∗

The operators are noncompactD(1)-isomorphic dilatation orbits in the
C| -isomorphic representations spaces

d, d∗ : SO0(1, 1)→ V, VT ∼= C|

10u Without argument means u(0), that is, for the trivial translation.
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The product representations (convolutions) lead to exponentials with the
eigenvalues{zm | z= 0,±1} for Fermi and{zm | z ∈ Z} for Bose.

A representation matrix element of the symmetric space position model
SD(2)∼= SL(C| 2)/SU(2)

SD(2) 3 e−Ex Eσ 7→ − Eσ Ex
r

e−r |m| =
∫

d3q

iπ2

Eσ Eq
(Eq2+m2)2

e−i ExEq = {ψ∗, ψ}(Ex)

with Pauli matricesEσ defines a noncompact position with a characteristic length
1
|m| (interaction range), implemented by C| 2-valued Pauli spinor fields on the posi-
tion manifold

ψ A, ψ∗A : SD(2)→ V, VT ∼= C| 2, A = 1, 2

The Cartan subgroupSO0(1, 1) is represented by an indefinite unitarySU(1, 1)-
representation matrix elemente−r |m|.

The product representations (convolutions) add up the noncompact invari-
ants{n|m| | n = 1, 2,. . .} in the exponential and are multiplied with spherical
harmonics of degree{2J | 2J = 0, 1, 2,. . .} for the representation of the sphere
SO(3)/SO(2).

12.3. Defining Spacetime with Two Invariants

The representation matrix element

D(2) 3 ϑ(x2)x 7→
∫

d4q

iπ3

2σ j qj(
q2

P−m2
0

)(
q2

P−m2
3

)2 eixq = ε(x0){Ψ∗, Ψ}(x)

defines symmetric spacetime (Saller, 1997). The two invariantsm2
0 andm2

3 charac-
terize time and position and give units for particle masses and interaction lengths.
The representation is implemented by C|2-valued Weyl spinor fields (Heisenberg,
1967)

ΨA, Ψ∗Ȧ : D(2)→ V, VT ∼= C| 2, A = 1, 2

It involves two conjugations—a definiteU(2)-conjugation for the timeD(1)-
representation and an indefiniteU(1, 1)-conjugation for the positionSD(2)-
representation. Therefore only the particle pole can be endowed with an addi-
tional asymptotic positive unitary spacetime translation representation structure
by adding a real on shell contribution via± 1

iπ
1

q2∓io−m2
0
. A parametrization with

creation and annihilation operators has to take care of the indefinite conjugation
involved.

The product representations of the defining spacetime representation will
give rise to product invariants that, in the case of an accompanying definite unitary
conjugation, can be identified with particle masses for bound states. To carry out
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such a program explicitly, that is to compute a mass spectrum from the spacetime

defining two invariants, the representation characteristic ratiom2
0

m2
3

has to be deter-
mined as well as the relevant normalization factors to be used in the eigenvalue
equations for the product representation invariants.
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