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Residual Representations of Spacetime
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Spacetime is modelled by binary relations—by the classes of the automor (@)

of a complex two-dimensional vector space with respect to the definite unitary subgroup
U(2). In extension of Feynman propagators for particle quantum fields representing only
the tangent spacetime structure, global spacetime representations are given, formulated
as residues using energy—momentum distributions with the invariants as singularities.
The associated quantum fields are characterized by two invariant masses—for time
and position—supplementing the one mass for the definite unitary particle sector with
another mass for the indefinite unitary interaction sector without asymptotic particle
interpretation.

1. INTRODUCTION

Quantum theory starts with operations (Finkelstein, 1996). An experiment for
guantum structures probes a “diagonalization” of the operator under question, for
example, of a time and position translation, of a rotation, or of a charge transfor-
mation, with the eigenvalues as possible experimental results, for example, energy
and momenta, mass or spin, or a charge number, respectively. Therewith, | shall
take the radical point of view that all relevant mathematical structures and tools
used in quantum theories have to have an interpretation in terms of operations, of
monoids, groups, and algebras, especially of real Lie groups and Lie algebras, rea-
lized and represented as acting upon sets, especially upon complex vector spaces
with a reality-defining conjugation. Representation theory gives the irreducible
and—for linear structures—also the nondecomposable action spaces. Almost all
functions relevant for physics can be interpreted as arising from representation
structures (Vilenkin and Klimyk, 1991).

Physical events represent spacetime operations, for example, translations,
rotations, and boosts. A quantum-mechanical dynamics, implementad by
(Hamiltonian H with eigenvaluesE € R) as basis for the time-translation Lie
algebraR, is a representation of the causal time gr@(ft) = expR, irreducible
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for €'F e U(1), for example, for the harmonic oscillator or for creation and an-
nihilation operators in quantum particle fields. In the Sclimger picture the
time representations id(1) are realized on a Hilbert space with the scalar pro-
duct (probability amplitudes) induced by the time representiit). The wave
functions come as position-translation-representation matrix elements, for exam-
ple, the scattering- and bound-state wave functigiis) in rotation symmetric
problems withr y(r) ~ e*r1Ql e "1Q as compactJ(1) and noncompadd(1)-
representations respectively of the radial translation moRdidn quantum me-
chanics the time translation eigenval&genergyE) and the position translation
eigenvalueQ are in a unique correspondence: For example, for a constant poten-
tial Vo with —%2 = E — Vy, the scattering case is given /> Vy with imagi-

nary eigenvaluegi | Q| and momentunmiQ| whereas the bound states come with

E < Vo where|Q| cannot be interpreted as momentum.

In analogy to the dynamics for timiz(1) = expR, the representatioh®f the
globally symmetric manifol(2) = expR* as spacetime model (see Saller, 1997,
1999; also the detailed discussion given later), with the Minkowski translations
as tangent spac®*, will be considered as possible candidates for a spacetime
dynamics:

time dynamicsrepD(1) withD(1) = GL(C)/U(1),
spacetime dynamicsep D(2) withD(2) = GL(C?)/U(2).

The spacetime manifolB(2) = D(1;) x SD(2) contains, as factor for the causal
groupD(1), the rank 1 position manifol8D(2) = SOy(1, 3)/SO(3) with another
Cartan subgroupOp(1, 1)= expR. An independent realization of both factors
in the Cartan subgroupd(1) x SOy(1, 1) of the rank 2 spacetime manifdli{2)

is characterized by two continuous invariants.

For particles with masm, the energy—momentay, G) as eigenvalues for
spacetime translationgd, X) are on shell, that ig? = m?. With Wigner (1939)
we know that particle quantum fields implement definite unitarily the spacetime
translation invariant with the mass? = g3 — G2 as the translation eigenvalue.
In the following the off shell structures of a propagator, that isofoet m?, will
be extended for a complete realization of rank 2 spacef{® with its two
noncompact invariants.

Representation matrix elemehtsf a real Lie group are analytic functions on
this group

D:G—C, g(x)— D(x)
for example,rXi sinr for compact spirsU(2) or cosxmfor compact axial rotations
U(1) or both cosm andt coshtm for noncompact timeéd(1). According to the

2irrep G andrep G denotes the (irreducible) representation classes of a gsoup
31n the following the short “representation” can stand for the more correct “representation matrix
element(s).”
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Peter—-Weyl theorem (Folland, 1995; Peter and Weyl, 1927), the span of the ir-
reducible representation matrix elements of a compact Lie group is dense in the
continuous functions on this group.

In a harmonic analysis, representation matrix elements of a group can be writ-
ten as Fourier transforms of distributions of their Lie algebra forms, for example,
of energies or angular momenta values, where the representation characterizing
invariants come as singularities, that is as poles of the distributions. This defines
the concept of residual representations. In the following, familiar algebraic repre-
sentation concepts (Helgason, 1978), such as weights, invariants, and Lie algebras
are translated into the language of residual representations.

In analogy to Lie groups such as the compafn) or the noncompadd(1),
symmetric spaces such as the noncompact position ma&if(2) and spacetime
D(2) also have linear representations that will be considered in analogy to the
representations of the time grol1). To construct residual representations of
the rank 2 spacetime manifol2(2) distributions of the energy—momenta R*
(tangent space forms) are used, supported by two invariant mg&sesn3, m3}
characterizing the Cartan subgrolfl,) x SOy(1, 1)-representations for time
and position.

2. QUANTUM REPRESENTATIONS OF TIME

A dynamics is a representation of time (translation), realized in quantum me-
chanics by the quantization (anti-) commutators of the quantum-algebra-generating
operators. IQ the simplest cases of a harmonic oscillator with Hamiltdﬁiazﬂ
% + m’M % for massM and frequencyn, or of a free mass point withl = Z'J—M
for frequencym — 0, the time-dependent commutation relations of the dual quan-
tum algebra generating position—momentum paip{ give the time representation
matrix elements

D(1) 5 € — D(t) = ([ip'X] [x.x] )(t)

i .
costm —— sintm
Mm € SO(2)
iMm sintm costm
- it
1 R
M e U1, 1)
0 1

with the shorthand notatiora(s), b(t)]. = [a, b](t — S), € = %1, valid for all
matrix elements. Those representations arise from the complex irreducible and
nondecomposable time representations with creation and annihilation operator
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(u, u) and nil- and eigenoperators (Saller, 1989) (b, § d¥) respectively:
[u*, ule(t) =em e U(1),

D(1)> € ~ { /g%, b. [b%, b]. 1 ity |,
(gt rgr) 0= (o 1) emevan

The quantization opposite commutators implementthe Lie algebra of the basic
space endomorphisms, for example, the Hamiltonians mentioned previously. For
the harmonic oscillator the(1)-induced Fock forng- - -)¢ of the time dependent
anticommutators arises as time derivative of the quantization

. 1
({ip, xhe  {X XPF ) i sintm —— costm 1 d
. 1) = = — —D(t
(<{p,p}>p (wx, —iphe) O (Mmcostm M ) im ato®

For the general quantum mechanical case \Wih= i[% 4+ V(X)] as ba-
sis for the represented Lie algebriagD(1) = R, the timeD(1)-representation
matrix elements as the ground state val(jass), b(t)].) = ([a, bl.)(t — s) of the
position—momentum commutators can be computed from the imaginary and time
translation antisymmetric position commutator

0 sintm
D) = [ dn? w(m?)i
o) = [ dm? i S
with a spectral measure(m?) for the time translation eigenvalues e R (fre-

quencies, energies), for examplém?) = §(m? — m3) with m3 > 0 for oscillator
andmg = O for free mass point, amgl= M %

(1 cisn))©

0 i
Z/o dmz,u(mz)( costm M smtm) € rep SO(2)

iMm sintm costm

Inthe case of acompacttime development, thatis, representatid(ik)iar SO(2),

where there exists a basis of normalizable energy eigenvectors (for the oscillator
build by the monomials of creation and annihilation operator), the energy measure
is definite(m?) > 0.

4The Lie group to Lie algebra transitid® - log G is denoted with the logarithm log as covariant
functor.
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3. TIME AND POSITION TRANSLATIONS
3.1. The Lie Groups for the Translations

Translations are formalized by additive groups (vector spakesly will be
convenient to introduce a distinguishing notation for the Lie group and the Lie
algebra involved, which have an isomorphic Abelian Lie group structure

Liegroup D(1)=expR ={e*|xeR}

. , eXpR=R
Liealgebra R =logD(1) = {x | x e R}

The noncompact grou®(1) as universal covering group is locally isomor-
phic to the compact oneg® e U(1) =expiR = R/Z with Lie algebra
logU(1) =iR.

The groupdJ(1) andD(1) are, as real one-dimensional Lie groups, isomor-
phic to the axial rotation§0O(2) and the Procrustedilatation groupSOg(1, 1)
respectively, that is the one-dimensional boosts

compact U(1)=SO(2) = {(f;snaa (S:(')ns‘;) ’a € IR}

noncompact D(1) = SOy(1, 1) = {(‘;?rfr:')’: ;')ZT;‘() 'x c R}

Those orthogonal groups with invariant bilinear forms of the two-dimensional
vector space they are acting upon, will be called self-dual representaifons
U(1) andD(1) respectively with the obvious isomorphy (f80(2) only in the
complex)

- o cose isina\ . (€* 0
definite unitary:SO(2) > (i sin cos(x> = (0 e“") e SU(2)

coshx smhx) ~ <ex eox> € SU({, 1)

indefinite unitary:SOy(1, 1)9<sinhx cosi ) = Lo

3.2. Real Operations Have Unitary Representations

The algebraic and topological completeness of the complex field@s the
definition of the transcendental numbeinvolving “exponential completeness”

5Procrustes in the Greek mythology either shrinked or stretched his visitors—tall or short respectively—
to death.

8For a group and a Lie algebra dual representations on finite dimensional dual vector spaces are related
to each other by inverse and negative transposition respectively.
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exp C= C\{0} and, therewith, the exponential transition from local linear struc-
tures (tangent vector spaces, Lie algebras) to global possibly nonlinear structures
(symmetric spaces, Lie groups). Therefore, | will consider representations on com-
plex vector spaces only. The complex representations of the physically arising
only real Lie groups or Lie algebras have to be unitary, defid{{® or indefinite
U(p, q), in order to recognize the realness also in the representation. Therewith,
the complex numbers are always used together with the canonical conjugation,
that is as the doubled real field€R & i R.

Only for one complex dimension unitarity is unique, characterized by the
real Lie groupU(1) = expiR. The n unitarities forn complex dimensions go
with the signature: For example, in two dimensions thig)-conjugation of 2«
2-matrices can be written as the familiar conjugate transposition that exchanges
the elements of the skewdiagonal whereaddfte 1)-conjugation can be written
with an exchange of the diagonal elements

Lo (o B o« vy
U(2)-c0njugat|on.(y 5) N (ﬂ_ 8_)

u(1, 1)-conjugation(;‘ ?) o (j: f;) _ <(1) é) ((/;z J(SZ> (2 (1))

3.3. Nildimensions for Noncompact Groups

Noncompact groups have reducible but nondecomposable representations
(Boerner, 1955; Saller, 1989; Shelobenko, 1958, 1959) where the representation
space cannot be spanned by eigenvectors only—there occur also nilvectors, that
is principal vectors that are not eigenvectors. The linear operators involved have a
Jordan triangular form with nontrivial off-diagonal entries.

The situation is characterized by the nondecomposable representations of the
groupD(1) with an eigenvaluen for e — €*™, which comes multiplied with an
automorphism of the representation sp&c& C*N and can be written with a
nilcyclic matrix My (nil-Hamiltonian), nilpotent to the poweX + 1

o (ix)? (ix)N
SR TR
i yN—1
D(l) 5 e > ei><(m+MN) ~ eixm (N — 1)! c GL(([:1+N)
0 0 1 (D¢




Residual Representations of Spacetime 1215

01 O 0

0 0 1 0
MM #0, M)V =0, My =

o0 ..- 0 1

o o0 ... 0 O

The natural numbeN is called the nildimension with + N the dimension

of the nondecomposable representation. Irreducible representations have trivial
nildimensionN = 0 andMy = 0. ForN > 1 the conjugation is indefinite, that is

the group image is a subgroupdf1, 1),U(2, 1),U(2, 2), etc.

An example for nontrivial nildimensions in quantum mechanics is the radial
part ¥, of the bound state wave functions in the hydrogen atom: It is a linear
combination of matrix elements— rN e~k of noncompact representations of the
radial translations with eigenvalue%, k=n+L+1

==

L+1
RY 51+ Dp(r) =rym(r) ~ (%) LﬁL“(Z?r) e
with the Laguerre polynomial§ as combinations of radial power§.

An example for nontrivial nildimensions in quantum field theory is quan-
tum electrodynamics where the nonparticle components df{ag-gauge field,
which come in addition to the left and right circularly polarized particle degrees of
freedom (photons), that is the Coulomb force inducing degree of freedom and the
so-called gauge degree of freedom, are spacetime translation nilvectors (Saller,
1993, 1995), that is principal vectors that are no eigenvectors. The dichotomy
between particles and interaction degrees of freedom in the electromagnetic po-
tential reflects the compact and noncompact Cartan subgroups in the Lorentz group
SO(2) x SOp(1, 1) € SOy(1, 3), represented definite unitarB0O(2) — U(2) for
the photons and indefinite unitari§Oy(1, 1) — U(1, 1) for Coulomb and gauge
degree of freedom. The nilpotency of the BRS-generator (Beetchl, 1976)
with the powerN + 1 = 2 has its origin in the time translation representation
D(1) — U(1, 1) for the two nonparticle degrees of freedom whith = (§ 3), the
nil-Hamiltonian that fulfillsM? = 0.

4. THE SPACETIME REPRESENTATION STRUCTURE
OF QUANTUM PARTICLE FIELDS

Particle fields are appropriate for describing free particles; they implement
definite unitary representations of the Poiredai€ algebra (Mackey, 1968; Wigner,
1939) logSOy(1, 3)® R*.
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A particle field, in the simplest case a hermitian scalar massivedigid > 0,
with creation and annihilation operators () u

d®q [m €*9u(@@) + e *9u*(q) =
20= [ G sz ko

[u*(B), u@)] = (27)%(@ — B) = ({U"(P), u@)}) = (U"(Pu(@))

is characterized by its quantizatiooausally supported and on shell

€(00)3(q® — m?) €3 =0 for x?< 0

[®, @](x) _ S(le) /

m

(21)3

and its Feynman propagator adding up the Fock form value of the quantization-
opposite commutator, also on shell

({2, @))e(x) _ C(x|Im) [ d'q

m = om ) @ ™

and thee (Xp)-multiplied quantization (Gel'fand and Shilov, 1963) which also has
off shell contributions, fog? # m?

€ (principal value P)

e(x)s(x |m) 1 [ d 1
m - _/ (27)® —q2 + m?
({®@, P}(X) = €(X)[P, @](X))r  C(x | M) £ie(Xo)S(X | M)
m m
— 4= d4q 1 iXq

272 g2Fio—m?

The harmonic contributions in the quantization

S(le)

i 2
) sinr,/qg — m?

"The linear Minkowski spacetime parametrization is used in the notation for (anticommutators
[A(Y), B(X)l+ =[A, Bl=(x — ).
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and in the Feynman propagator

Cix1m) , e(oisx | m)
m m
sinr, /g2 — m?
[ﬂ(qg ) R
dop . _ cosr /g2 — m?
= | Gnp % +iv(g2—m?) —
e ' /m2 _ q2
+i0(m? — q3) 70]

r

show irreducible (definite unitary) time translation representation matrix
elements

R > Xo > e51%0% ¢ U(1)
With the polar coordinate position translation decomposition
% € R®= R x SO(3)/SO(2)

and the geometrical Kepler facto}r for the sphere surfac&Q(3)/SO(2)-
distribution, the position radial translation monoid R* is represented b?%'q'
(spherical Bessel function) with sirig| as matrix element of a compact group

for the quantizatiors(x | m) and the Fock form functio@(x | m). In the propa-
gator contributiore(Xo)s(x | m) there arise the = 0-singular spherical Neumann
function %"q‘ that contains cas|j| as a compact position translation representa-
tion matrix element. The additional off shellinduced Yukawa contributions display
a representation matrix element of the radial position translations in a noncompact
(indefinite unitary) group

el e SO(2)
Rt >r
~ {e”Q| € SOy(1, 1)
The off shell contributions with the Yukawa interactions in the Feynman propagator
are no definite unitary representation matrix elements.
The time projectionfd3x of quantization and Feynman propagator gives
matrix elements for the representation of time translations in the rest system of a
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massive particle

C(x | m)
Xo > /d3x is(x | m)
€(Xo)is(x | m)
E cOSXom
= /d Ec(E)] m |8(E2—m?)e*E = | i sinxom
me(Xo) i sinXg/m

The analogue position projectigid x

i 0
is(x | m) 0
X > Zn/(_j—xo C(x | m) = /d7Q 0 e 'Rl — e_Orm
M\ e(xo)is(x | m) 9(Q% — m?)

is nontrivial only for the off shell contributions with radial translation representa-
tion matrix elemeneg~"™ in a noncompact group.

Particle fields display in the quantizatioséx | m) and the Fock form
C(x | m), both on shelh? = m?, matrix elements of definite unitary representa-
tions for the translations. The off shell contributiong {ry)s(x | m) involve matrix
elements for indefinite unitary representation matrix elements for position trans-
lationsIR®.

5. HOMOGENEOUS MODELS FOR TIME, POSITION,
AND SPACETIME

5.1. Exponentiating Time Translations

The time translations as a real one-dimensional vector spaeex, € R are
isomorphic (as Lie group) to its exponel{1l) = expR, the time group. They
constitute the noncompact part (modulus) of the full complex group, given by the
phase classes

time:GL(C)/U(1) = D(1) = expR = R

5.2. Exponentiating Position Translations

In the semidirect Euclidean gro®0(3) x R?, the position translations as
a real three-dimensional vector spa@are isomorphic—as vector space with
rotation action—to the Lie algebra of the rotations 8)3) = R®. In theSU(2)-
formulation, the rotationSO(3) are represented by the adjoint action of its covering
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groupSU(2)
SORB)xR3~SUR)xR3, O.X~uo%sou!

N X X1 —IX
with X6 = 3 1 2
X1+ 1X2 —X3

1
ueSUR)= 02 = = trocducPu™?, 0O e SOB) = SU2)/{+1s)
b= 2

In the Pauli representation, the position translations are hermitia@-matrices,
that is representativesf the classes of all complex special matrices$agC?) =
R @ (i R)® with respect to the special unitary ones 8g(2) = (iR)3

%o = (Xo)* & logSL(T?)/logSU(2)

The global position manifold arises by exponentiation, isomorphic as symmetric
space to the classes of the Lorentz covering gr8ufC?) with respect to the
rotation covering grougU(2)

position:SL(C?)/SU(2) = SD(2) = expR® = R3

The global symmetric space positi&fi)(2) and its tangent vector spaké have
a manifold isomorphy only, exp® # (expR)3.

5.3. Exponentiating Spacetime Translations

In the Poincae groupSQOy(1, 3)x R* the translationsR* are not isomor-
phic to the Lie algebra of the Lorentz group I8G(1, 3)= R°®. In the SL(C?)-
formulation, the Lorentz transformatioy(1, 3) are represented by the conju-
gate adjoint action of its covering gro®i.(C?)

SOy(1, 3)x R* ~ SL(C?) xR*  A.x~Soxos'

with X = xoK = (X0+X3 X1 - iX2>

X1+iX2 Xg— X3

1
seSL(C?) = A = > tro®sgs', A e SO(1, 3)= SL(C?)/{+1,}

with Weyl matricesr* = (12, 5) = 5. Inthe Cartan representation, the spacetime
translations are hermitian2 2-matrices, that is representatives of the classes of
all complex matrices loGL (C2) = R* @ (iR)* with respect to the unitary ones
logU(2) = (iR)*

x = x* & logGL (C?)/logu(2)

8The funny double element symbol means a representative of a cosetgthat@/H <> g € gH €
G/H.
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Global spacetime arises by exponentiation and is given by the classes of the full
groupGL (C?) with respect to the unitary phase$2), the moduli ofGL (C?)

spacetimeGL (C?)/U(2) = D(2) = expR* = R*

The causal structure of spacetime is the spectral order (Rickart, 1960) @#the
algebra logsL (C?).

The noncompact symmetric spde€2) has, analogue to its compact counter-
partU(2) withU(2) = U(1,) o SU(2), a product decomposition into Abelian causal
time groupD(1,) and real three-dimensional position (boost) manifsi(2)

D(2) = D(1) x SD(2), SD(2) = SL(C?)/SU(2)

Both symmetric spaces have real rank 2—also indicated in the nota¢®rand
D(2)—which reflects both the number of independent invariants and the dimension
of amaximal Abelian Cartan subgroup (flat submanifold; Helgason, 1978), arising
as factor of the two-sphef®0O(3)/SO(2) in the polar decomposition

U(2) = U(12) o SU2) = U(1) o SO(2) x SO3)/SO(2)
D(2) = D(15) x SD(2) = D(1) x SOn(1, 1) x SO3)/SO(2)

For the decomposition of the real four-dimensional tangent spaces (Lie algebra
for U(2)) with the Lie algebra of the Cartan subgroup, the sphere factor remains
unchanged

logU(2) = logU(1,) & logSU(2)

= logU(1) @ [logSO(2) x SO(3)/SO(2)]
logD(2) = logD(1;) @ logSD(2)

= logD(1) @ [log SOp(1, 1) x SO(3)/SO(2)]

The representations of noncompact spacetini2) and compact internal
groupU(2) are characterized by two invariants from a continuous spectrum for
a Cartan subgroup(1) x SOy(1, 1)) and from a discrete spectrum for a Cartan
subgroupJ(1) o SO(2) respectively. Minkowski spacetini* in the Cartan rep-
resentation byJ(2)-hermitian 2x 2-matrices has the familiar conjugate adjoint
GL (C?)-transformation behavior to be compared with the adjoint action of the
compact groupJ(2) on its Lie algebra log(2) = (iR)*

2 _ [ Xo+ X3 X1—ixp .
geGL(CY, x _<x1+ix2 XO_X3>eIogD(2) = Xk goXog

. footoas ay —iap . . «
u e U(2), |oz_|<0[1_|_ia2 ao_a3>€|OgU(2):>IOH—>UOIOlOU

u* = U71
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However, in contrast to the decomposition of th€)-Lie algebra into Abelian
U(1,) and simpleSU(2)-contribution, compatible with the adjoibi(2)-action, the
decomposition of spacetinig(2) and its tangent space into time and position is
not compatible with the action of the Lorentz group

1 *
UeU®), logu@)sia =iaols +ids, {32:2‘3}120;“ 2:8328(22))
s e SL(C?), logD(2) > x = Xl + X&
So Xplp o s* ¢ logD(1y)
SoXo os* ¢ logSD(2)

Both symmetric spaces are parametrizable by exponentiating the tangent
space, for example, in the polar Cartan decomposition

in general {

logU(2)sia = u<i) oi(aols + |@|os) o Uﬁﬁ(i)
|| ||
= eXpia = U<i) 1) ei(vt012+‘&‘(’3) ° u* (i) c U(2)
ot ot

- -

logD(2) 5 X = u<§> o (Xols 4 Fo3) o u<§) r =%

X X
= expx = U<F> o @olatros u*(r) e D(2)

The diagonalization ob(2) andU(2) with the sphere operations

% cos3 —g e sinE
u(—) =1 2, ; & SU(2)/U(L) = SO(3)/SO(2)
ey sinE cosi

defines{iayg, i |@|} as Cartan coordinates for the internal group &agr} (time
and radial translations) as Cartan coordinates for spacetime.

Similar to the local-global group isomorphism for tife= expR = D(1)
one has the manifold isomorphy for spaceti@®= expR* = D(2). Via their
embedment as future con®y1) andD(2) are parametrizable with tangent space
R andR* coordinates

teR = D(1)> € =e(s)s eRT withse R, s> =¢

4 _ 2 VAT 4 | Yo =¢7
x € R* = D(2) > € = e(yo)?(y)y € (R)" withy € R?, Y —¢

5.4. Time in Spacetime

A dynamics in quantum mechanics arises from representations of the time
groupD(1) = expR whose representation spaces are realized in theoBictyer
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Table I. Embedding Time into Spacetime

Time Spacetime
D(1)=GL(C)/U(1) < D(2)=GL(C?/U()

Quantum theory Quantum mechanics— Quantum fields
Cartan subgroup D(1) — D(1) x SOp(1, 1)
Full group GL(CT) > GL(C?)
Tangent space (translations) R < R*
Future t =e(t)t > x = €(xp)® (x3)x
Rt = D(1) RYHT = D(2)
Particles (states) D(1) - U(1) = D(1) — U(1)
Interactions Not intrinsic SOu(1,1)— U(1,1)

picture by wave functions depending on position translations. The quantum me-
chanical relevant time structure is a proper substructure of spacetime, modeled by
the homogeneous spad€2) = GL (C?)/U(2) and represented by quantum fields.
The quantum mechanical energy eigenstates for conifdgtrepresentations are
embedded as spacetime particles. The strict future cone with dimension four in
flat spacetime being isomorphic to nonlinear spacef{® contains not only the
totally ordered one-dimensional causal subgrb(p), it leaves room for a three-
dimensional position submanifo®D(2) whose noncompact dilatatio8€y(1, 1)
characterize spacetime interactions. The particle contributions, unitarily represent-
ing D(1), have to be supplemented in relativistic quantum theories by nonpatrticle
ones to implement genuirt®Oy(1, 1)-representations. The nonparticle contribu-
tions are a genuine intrinsic feature of spaceti2) without analogue in quantum
mechanics. There the interactions, such as the Coulomb potential for atoms, have
to be put in by hand (see Table I).

6. TWO CONTINUOUS INVARIANTS FOR
SPACETIME REPRESENTATIONS

Since Yukawa, the unification of a causal time development (characterized
by a particle masay > 0) with a position interaction (characterized by a range
mis, mz > 0) in one spacetime Klein—Gordon equation for &mg)-multiplied
quantization distribution with one mass> 0

d2 g ltimo
(W + m§> = 25(t)

im X|m
0 f—>(82+m2)e(xo)s( | m)
32 e 'ms m
(‘ﬁ“@) our = 20

=25(x) withmg=mz=m
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seems to be an obvious relativistic bonus—all interactions can be interpreted as
particle induced.

Particle fields with a Dirac energy—momentum distribution in their quanti-
zation

istx 1m) = | 9 (oms(a? - m?) &
(2r)?
give by position-integration-representation matrix elements of the Abelian time
groupD(1) = expR in SO(2)
D(1)—~ C
e° /d3x is(x | m) = de me(E)S(E? — m?) €% = sinxom
The appropriate distribution for a representation of the position symmetric
spaceSD(2) = expR? arises from a derived energy—momentum Dirac distribution
i s9P(x | m) d is(x|m) d“q 5o
_—mnm—m—mn - —-— = 8/ —_ eIXq
- e [ et (e - )

Time integration leads to a Dirac distribution for the invariant andS®(2)-
representation matrix elements$®y(1, 1)

SD(2) > C

e > dr [ dxoc(e)s(x | m) = [dQ m(Q? -y e IO —e ™

The Dirac energy—momentum distribution for time with characterizing sec-
ond order differential equation in contrast to the derived distribution for position
with characterizing fourth order differential equation

2 ijtim 2 2 —rm
( d + m2>é_ = 28(t), <_a_ + m2) © 25(X)

dt? im X2 drm

reflect the different dimensions 1 and 3 of the time gr@{f) and the position
manifold SD(2) respectively.

The association of energy—momentum singularities to representation invari-
ants forD(1) (time) andSD(2) (position) respectively is blurred since a decompo-
sition of the spacetime tangent Minkowski translatiffss x = 1,xo 4+ o X into
time and position translations is not compatible with the action of the Lorentz
group SOp(1, 3). The Dirac distribution has also a nontrivial projection for the
positionSI(2) structure

—rm

2n/dxoe(xo)s(x |m)=m
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and the derived Dirac distribution a nontrivial projection for tiD€l) represen-

tations
smxom — XpM COSXgM
d3x istP(x | m) = >
2m

The position projection of the Dirac distribution leads to a Yukawa force which is
not a matrix element of aBD(2)-representation, but only of its tangent position
translationsR®. The time projection of the derived Dirac distribution leads to
matrix elements of reducible nondecomposadl(&)-representations.

Related to the two Cartan coordinates, r} that reflect the rank 2 of the
noncompact homogeneous manif@¢), that is two Abelian subgroup3(1,)
(time) andSOy(1, 1) as a dilatation subgroup of the position manifsla(2), two
invariants{m3, m3} have to characterize thB(2)-representations. The definite
unitary representation@(lz) 5 g0l 5 g0iMo ¢ Y(1) are characterized by a
particle massn3. A second mass3 characterizes the indefinite unitary repre-
sentationSOy(1, 1) > € — e*'™ ¢ SU(1, 1) with an interaction rangg"; and
without partlcle asymptotlcs There is no group theoretical reason o identify
both scalesm3 = m3; in general, the representations of spacetid{&) come
with two different scales whose ratlﬂg is a representation characteristic of a
physically important constant. The ratio of the characterizing invariants for par-
ticle and interaction should be seen in analogy with the relative normali-
zgmon of time and position translatlonTE ( 21) as given with the speed of light
c

.[2

7. RESIDUAL REPRESENTATIONS

Before the definition of residual representations in general their structure will
be exemplified in the familiar example of the compact and noncompact abelian
groupsU(1) andD(1).

7.1. Residual U(1)x D(1)-Representations

An irreducible representation of the complex Abelian group expg be
written as residue of its eigenvalue by using the complex Lie algebra fQrmsC
dQ 1
expCs & > & — 7§ £Q_1
XpLse e 27 Q¢
which, with the canonical conjugation, gives for the irreducibl@) andD(1)-
representations, necessarilyuiil)

e’Q ¢ cirrep expC= C

49 1 g

2irq—-Z €U

UQl)s €* — 9% = /dqa(q — 7)€" =

ZeirrepU() =7
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. ) dq 1 .
t tim _ _ tqg _ itq
DA)>€ > € _/dqa(q m) € nginq—me e U(1)

imeirrepD(1) = iR
with the neutral representations dr= 0 andm = 0 respectively. The integrations

forthe compact and noncompact group are related to each other via the Lie algebras
and their forms by multiplication with the imaginary unit

for compactU(l) (i, q) <> (t,iq) for noncompacD(1)

Measures of the integer winding humbefsas invariants of the compact
groupU(1) lead to Fourier series as measuti{d)-representations

wiirrepU(l) - R, Z+— u(2)
meas irrep U(1) > u — D* e rep U(1)
U(1)> €* > D*(@) = > u(2)e**
Zel

The continuous irreducible representation classeB () characterized by imagi-
nary numbersm have Lebesque measuten based real valued measures giving
rise to Fourier integrals as measui2(l)-representations

wiirrepD(1) > R, m u(m)
meas irrep (1) > u — D* € repD(1)

D(1) > € — DX(t) = /dmu(m) gtm

where also matrix elements of reducible nondecomposable representations may
occur by using derivatives with respect to the invariant

um= Y MN(m)(%)N

N=0,1,...

7.2. The Definition of Residual Representations

Residual representations are complex functions on a real finite dimensional
symmetric spacé&, for example, a Lie group, with tangent space (Lie algebra)
log G = R", as given previously fod(1) andD(1) and in the following folSU(2)
and SL(C?) and generalized to the position manifd(2) and the spacetime
manifold D(2).

The equivalence classieep G oftheirreducibles-representations are char-
acterizable by invariants, taken from a rational spectrum for a compact and also
from a continuous spectrum for a noncompact Cartan subgroup. The weights
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(eigenvalues) for the symmetric spa@eare a submodule of the linear fortng €

(log G)T of the tangent space € logG. The invariantgl, ..., |, }, characteriz-

ing an irreducible representation, are related to multilinear tangent space forms
(monomials in the weights). Appropriate measuiég | (q) of the linear forms,
which can be written with a Lebesque measure basis and a distribution of the tan-
gent space forms (10§)"T = R" lead to matrix elements of irreducible symmetric
space representations

| :R" > R, q~ 1(q)
D : measR" — irrep G, | —» D'
D':G—C, g(x) — D'(x) =fo|”q|(q)eixq

The complex generalized functioh&y) have poles at the values for the invariants
characterizing an irreducible representation, the distributions come as quotients of
two polynomialsl (q) = Eg—gg;. D' is called a residual representation®fwith
I (q) a residual group distribution.

Measured representations for a symmetric space (Lie grGupjtegrate

irreducibleG-representations with a measufd (1) of the invariants

w:irrep G —» R, I = u(l)
D : measirrepG — repG, u +— DH
D*:G — C, g(x) — D*(x) = /d’l w(1)D'(x)

The product in the algebra of the representation clasges is implemented
via the convolution of the distributions for the matrix elements of the product
representation

Dl]_ ® Dlz — Dl]_*lz

In the following, these general structures will be concretized for the groups
and symmetric spaces relevant for the spacetime nia®|

7.3. Residual SO(2)x SOy(1, 1)-Representations

The real Abelian groupO(2) x SOy(1, 1) has its irreducible self-dual com-
plex representations in the two types of two-dimensional unitary groups, the defi-
nite unitarySU(2) or the indefinite unitargU(1, 1)

SO2) C SU2)
SO(2) x SOu(1, 1) — {500(1, 1) cSud,1)

e(i a+x)o® — e(i aZ+x8)o®

9The linear forms (dual space) of a vector spicare denoted by/ T .
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The unitary group$U(2) andSU(1, 1) define the weightsZ §) of the principal
(compact) and supplementary (honcompact) representations respectively.
The principal SO(2) x SOp(1, 1)-weights coincide with thé&J(1) x D(1)-
weightsZ x iR. An integer eigenvalue paft- Z} characterizes a self-dugD(2)-
representation
cosx i Sina cosaZ i sinaZ
SO@2) > (i Sina COSot) ~ (i sinaZ COSaZ)

- éDtZ 0
= (%) ohz) e sud

leading to a quadratic natural number valued invari@fat An imaginary con-
tinuous eigenvalue paift£im} characterizes a self-dual compa80y(1, 1)-
representation

SOy(1, 1) <coshx smhx) . (cosxm i smxm)

sinhx coshx i sinxm cosxm
- eixm 0
= ( 0 ei><m) € SU(Z)

with a continuous positive invariam? > 0
weights SQ2) = {Z} = Z, irep SO(2) = {|Z|} = No
weights29S0y(1, 1) = {im} = iR,  irmep@®9S0Oy(1, 1)= {m?} = R*

The new realSOy(1, 1)-weightsm € R (supplementary) in contrast to the
imaginary principal weightsm € iR given earlier come for dimensions> 2
with the possibility of indefinite unitary groups. A supplement&§y(1, 1)-
representation is characterized by a real continuous eigenvalugtpajr

coshx sinhx coshxm sinhxm
SG(l, 1)B(Sinhx coshx) (sinhxm coshxm)
~ [eEm 0
= ( 0 e—xm) e SU(1, 1)

with a continuous negative definite invariant
weightstVS0y(1, )= {m} =R,  irrep®YSOy(1, 1) = {—m?} = R~

Residual representations i80(2) (principal) with invariantsm? e R*
can be formulated by distributions with tleintegration deformed as prescri-
bed by g?Fio, which for an undeformed integration gives singularities
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atm? +io = (Jm| £i0)?
1 Im
iTg2Fio—m?

(W™ = [diqmmipt@e, ImiE = o

e = / diq[m?%(@) €', [m?%@) =+

for SO(2), SOu(1, 1) — SU(2), m € (Z, R)

Residual representations®t(1, 1) (supplementary) with invariantsm? e
R~ are obtained from residual representationSu(2) (principal) by the real—
imaginary exchanget(, q) < (x,iq)
1 |m|
7 g%+ m?2

—ee = [dgl-m@ e, ) =

e = [diq-ma@e ™, [-ma) =

for SOy(1, 1) - SU(1, 1), me R

In the transition from the compact to the noncompact representation structure the
invarianti|m| has to be replaced by|m|

for SO(2) ¢ SU(2) + i|m| <+ —|m| for SOy(1, 1) Cc SD(2)

The matrix elements for the representationS@®(2) andSOy(1, 1) fulfill the
second order differential equations

2 ) 2
(% + m2> e "™ = £2i |m|5(t), (% - mz) e XM = —2Im|5(x)

The product representations arise by convolution-Sfo€2) with equal type,
either+io or —io—uwith the supindice$l, 0} adding up modulo 2, for example,

[m3]2 = [m3], = [m2];
[-mé]"« [-m3]" = [-m]"

With the convolution the distributions

} M| = |my| + [mg]

. 1
. 1
. 1
imep - DSOu(1, 1) = m»k#ﬁm=aaiﬁim€@
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generate the compact and noncompact self-dual Abelian representations respec-
tively. The neutral representations arise for trivial invariant.

7.4. Residual Representations for Spin SU(2)

~_If the compact groulsO(2) comes as Cartan subgroup in the special group
e'X? ¢ SU(2) with the Cartan polar decomposition

SU2) = SO(2) x SO(3)/SO(2)

residual representations employ the foring R® of the tangent Lie algebra
log SU(2) (angular momenta) with the singularities of the distributions determined
by the values of the invariant bilinear Killing forgy as singularity location of a
dipole

for SO2) € SUR): ¢ = [ [0, m.() e

1 |m|

TS 735 T o meR
i72 (G2 Fio — m2)?

[0, m?].(@) = +
This scalar representation and similar integrals can be obtained by derivations

with respect to the invariamh?® and the Lie parametérfrom the in- and outgoing
spherical waves

d3 1 L e:tir\m\
/ 9 =  gimao , MmeR, X#0

272G2Fio—m? r

d 1 9 d X0 32 5\ etiriml .
— =, —=-—, (= +m = 47 8(%
am2 — 2jm| a|m| 9% roar <8x2 + ) r 7350

which, however, are n8U(2)-representation matrix elements because of the Lie
parameteik = 0 singularity.
The scalar matrix elements fulfill fourth order differential equations

92 2
<ﬁ + m2) "M = £87i|m|s(X)

Vector valued distributions represent nontrivially the two-splS&d3)/SO(2)

-

—r e = [ g, (@) e

_ [d%q d o i%

= —= 5 , meR
=@



1230 Saller

leading to the matrix elements of the defining Pauli representation
3 SN ARG _ aki
[ a0, 1@ e = e 33

o I e 1% — 1,cosr — —i sinr
[dan @e = - F e r

The spherical dependenéereplaces the(x)-dependence fa8(O(2).
With the Lie algebra additive convolution product of the distributions for the
irreducible residuabU(2)-representations

-

q

irrep SU(2) = {a > L@ = @i e

Im| =2J e No}

involving the neutral representation for trivial invariant= 0 one can combine
the matrix elements for all other representations, for example, the scalar ones with
Imy| + [Mz| = [m. |

XTaeiirlml‘Sabeb e:tir\m2| :e:i:ir|m+\
o - _
[1,m?], "% [1,m2], @ = [0, m? ], (@)

a a
< ) /d3Q1d3 ﬁq—lzfs((h + G2 — Q)5abq—2
Fio—ms (q2:|:|o—m2)

i Im |
72 (G2 Fio —m2)?

or for the adjoint representation

Sap COS 2

Xe .
— CoS 2)+eabc7° sin2

which arises form, | = |my| + |my| = 2

x* eiir\mnx_b eirimal _ X Xb XX girim,|
r r
2)'=2 N a
(1.5 1,8, @ = ( ) [dade
(G2 Fio—m )
9%
x 8(01+ 02 — Q)—
(@ Fio— mz)

In general, the matrix elements 8tJ(2)-representations come as products
of a homogeneous polynomial (spherical harmonics) of degdééPthe sphere
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SO(3)/SO(2)-representation and an expontential for the Cartan subd?@{p)
with winding numberst2J

{[X]ZJ +ir2J
r

% 0 5 1 X2 % 2 XaXb Sab
R G B e 1

Matrix elements of measuredlJ(2)-representations use real measures of the
irreducible representations classes

2) e No, 2J) e No}

w s irrep SU(2) — R, 23 > u(4J?)
meas irrep SU2) 5 u — DX e rep SU(2)

with the functions on the spin groliJ(2)

-

i %G 2 g —ixa
SU2) > e > DL(X) = ZJ; (‘”/ T2 @0 492

X
__= 4J2 eiII’ZJ
: PRI

2j=0,1,..

7.5. Residual Representations for Position SD(2)

For the position manifolde™*¢ € SD(2) with the Cartan polar decompo-
sition

SD(2) = SOy(1, 1) x SO(3)/ SO(2)

residual representations use the tangent space forms (mofenk) and, in
comparison td&SU(2), the tangent space real-imaginary exchange for compact—
noncompact

Lie algebra and forms¥, d) < (X, iq)
for SU(2) ) . ) for SD(2)
invariant & i|m| < —|m|

As for the Cartan subgroupOp(1, 1) there exists two types: The compact
representationSD(2) — SU(2) (principal) withSOp(1, 1) —» SO(2) and the non-
compact onesSD(2) — SU(1, 1) (supplementary) with faithful representations
SOy(1, 1) - SOy(1, 1). Both are representations of the homogeneous position
manifold in a unitary group, definite or indefinite.



1232 Saller

From the Yukawa potential
a3 1 sig e rim .
/ qie‘x'qz . meR, X#0

272 G2 + m?2
32 5 efr\m\ .
— —m = —4ré(X
(ax2 > r 75(%)

which, by itself, is naSD(2)-representation matrix element because ofkthe 0
singularity, one obtains by derivationo,ﬁ;2 and % the scalar matrix elements,
trivially representing the sphe&0(3)/S0O(2)

for SOu(1, 1) SD2):e™ = [ dalo, ~mPi(@) e ¥

- 1 Im|
[0, —m?)(d) = ;m,

and the fundamental noncompact residBBN2)-representations using a vector
valued distribution

meR

X _r‘m‘_/ 30[1 —m21(F) =i _ @L iXq
“e = [ d°q[1, —m?](q) e = in2(6|2+m2)2e

This has to be compared with the elements in the defining representation

- o

. oX .
e *? =1, coshr — s sinhr

, melR

The scalar matrix elements fulfill fourth order differential equations

52 2
(7 — m2) e "M = 87 |m|§(X)

2 2
<% + m2> et — £87i|m|s(X), meR

In contrast to the spin groupU(2) where the representations of the com-
pact Cartan subgroupO(2) and the spher80(3)/SO(2) go both with discrete
invariants 2, 2J € Ny, arising as degree of the spherical harmonics and as wind-
ing numbers, the continuous invariant € R* of the noncompact Cartan group
SOy(1, 1)-representation in the case of the position man&aXR) is taken from a
different spectrum as the discrete invariadt 2 N for the spher&0(3)/SO(2)-
representations. Again the convolution products of the distributions for the funda-
mental residuabD(2)-representations

€ R}

irrep Y SD(2) = {a = [1, —m?)(§) =
me IR}

-

s
i72 (G2 + m?)?
1 q

irrep (2,0 SD(2) = {C] — [1, mz]i((:i) = mm
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define the matrix elements of tI8D(2)-representations. The representations for
trivial invariantm = 0 will be called neutral.

Measured SD(2)-representations use real measures of the continuous
invariants

w:irepSD(2) > R, m? > u(m?)
meas irrep SO2) > u — D* e rep SD(2)
with the functions on the position manifo&D(2)

SD(2) 5 € %7 > D*(X)

[ dntuc) / .
=——/ dmPu(m?) e"'™ for rep®D SD(2)
rJo

=14 and

2 q — i X{
/0 drme(m )/lﬂz(q2:F|0 e &

:_§/ dmPu(m?) eI for rep?9 SD(2)
0

The two integrations in measured representation matrix elements go over the
tangent space formgd®q and the invariantg,” dn? with the dimensions 3 and 1
ofthe symmetric spac®D(2) and a Cartan subgro@y(1, 1) respectively. Matrix
elements of reducible nondecomposable representations occur by using derivatives
with respect to the invariant

um)= 3t )

N=0,1,..

8. RESIDUAL REPRESENTATIONS OF SPACETIME

Matrix elements of representations of a symmetric space (Lie group) can be
formulated as residues for characterizing invariant singularities of their tangent
translation (Lie algebra) forms. For the groupd), D(1), SU(2) and the position
manifold SD(2), as done in the former sections, this is only a reformulation of
known structures. Residual representations constitute a genuine formulation for
the rank 2 symmetric spacetird€2). Two values for the Lorentz invariant energy—
momentum squarg? characterize the action of the causal gradd) and the
position manifoldSD(2).
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Representations of spacetime
D(2) = D(12) x SD(2) = D(12) x SGy(1, 3)/SQ(3)
= D(1p) x SOn(1, 1) x SO(3)/S0O(2)

will be formulated as Fourier transforms of energy—momentum distributions, com-
patible with the action of the Lorentz grogDy(1, 3) on the tangent Minkowski
spacetime. The two invariant masses characterizing the representations are imple-
mented via singularities.

The irreducible residual representation matrix elements of spac&{2e
parametrizable with causal vectorg (x?) € R* in tangent Minkowski spacetime
where the two reflected points:x(x?)} and, equally, their representation images
have to be identified

D(2) > x#(x?) = (m3; 1, —m3)(x) = /d“q[mﬁ; 1, -m3](q) €
involve a two factorial energy—momentum distribution
irrep D (2)
1 x
17 (0 — m) (a3 — m3)
It describes the Lorentz compatible embedding for the representation of the two

D(2)-factors and involves a simple pole (particle singularity) for the compact
representation of a Cartan subgroup time

= {q > [md 1, -m3](q) =

5 Mo, mgeR}

p— o
with pole location forg = 0: g3 = m3
and a dipole (interaction singularity) for the noncompact representation of the
position symmetric spaceD(2) with Cartan subgrouOy(1, 1)
1
2
(07 — m3)

with dipole location forgy = 0: G2 = —m3

for SD(2) > SOp(1, 1) - SU(L, 1):

The two-spher&0(3)/SO(2) nontrivially representing factor is given g/ }13:0
in the numerator.

The Fourier transform of a principal value distribution is the causal Fourier
transform of a Dirac distribution and vice versa

dq 1 @i\ () &9
/7W<E(Xo) eixq> - fd4q €(A)5(a* ~ m2)< eixq )
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The matrix elements of the measured spacetime representatidb@ps
functions involve a measure for the two continuous invariants

pirrepD(2) > R,  (m§, mf) — w(m, mj)
meas irrep D(2) > u — D* > rep D(2)
D(2) > x9(x?) — D*(x)

d* 2 :
[ oot [ 5B

73 (o — mp) (o — mé)

TheD(2)-representations are different from the Lorentz compatible position
distributions of time representations as used for the quantization of the tangent
Minkowski spacetime particle fields @flen—Lehmann representationsall€i,

1952; Lehmann, 1954), for example, for a spﬁrmassive particle in a Dirac
field

d*q i(yq-+]| “|)
2 xq 2
particle fields / dn? u(m )/ 3 g2 — e |o , n(m9) >0

with probability related spectral measyg¢m?) for the invariant of the definite
unitary representations of the spacetime translations.

From the Lorentz scalar spacetime distribution with a simple energy—
momentum pole one obtains

d4 1 4
(0% + mz)/ﬂ—;q i X9 = —1678(x)
2

the derivatives:%, with respect to the invariant

onm?
3 e (XPmMP
d'q TI@+N 9% ﬁ(x)go( 4 ) n=t
f_q ( + ) eixq= 4
73 (qz_m2)2+N 9 N X2m2
p 2 —
()" o). o

x2 x2m?
=8 = ) + o (x®m?E , N=-1
(4>+ Gcym 1( 7 )

N
ﬁ(x2)<—xzz) 5N<X2;“2>, N=01,...




1236 Saller

and the derivativ%f’; with respect to the Lie parameter

/d“q ar@-+N) dxa
i3 (qg . m2)3+N

N 22
(;7) ﬂ(xz)&)()(:ln ) N=-1,-2
X S
—_ 4
T2 N 2,722
(%) 1>l(x2)50<xé';n ) N=01,..
X2 X2 x2m?
81(?) — m28(z> + z‘/‘(xz)m"’é’g( 2 > N=-2
2 22
- g —5(%) + ﬁ(xz)m251<X:' ) N=-1
2 22
19(x2)(—x—> 5N<X;" ) N=01...

which involve the Bessel functiongy with & € R

£\ g [ 0\ = (-5)"
w((5) = Ty = (455) 90 = Ry

n=0
£\ (& £\ SANICAY
(_Z> En (Z) = <_E> InE) = (Z) <g) Jo(£)

The distributions for strictly negative nildimensid, that is, with a Dirac
distribution on the light cong? = 0, are no spacetim®(2)-representation matrix
elements. One obtains for the irreducible spacetime representatioiy2he
functions

X9 (x?) > (Mg, 1, —m3)(x)
_ /d“q 2q gixa
im3 (q mo) (q m3)

(mS - mg)’ m; — o
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The neutral elements, either f8D(2) or D(1), are defined by trivial masses

d4 2 . 2m?2
(m%1 1, O)(X) = /”T_g(qucé)(qs)z el = Xl?(X%(Sé(%)

4 22
(0;1,-m3)(x) = d_qz—q e =xv(x)|-& XM
8 i73 g2(02 — m2)? 4
05 (0 — m3)
x2m2
ra(g))

4 .
d q 2q e|)(q — iﬁ(xz)

in3 (@@)° 2

©:1.000 = |

9. ASSOCIATED RESIDUAL DISTRIBUTIONS

Given a residual distributioh(q) = lo(q) for an irreducible representation
of a symmetric space (Lie grouf), singular distribution$l \(q)} using the same
pole locations, but with possibly different orders, are callegssociated residual
distributions. The possibly different singularity orders of the associated distribu-
tions will be characterized by integer nildimensidis= Z.

Associated to the Dirac distribution for an irreducible Abelian group repre-
sentation are its derivatives

(5™(m—g)IN=0,1,...) {meZ forirrep U (1)

me R forirrep D (1)
- dg I'(1+N) , -
S(N) _ itq =¢ itg _ t N Litm
qu (m—aq)¢€ 27 [ MmN € (it)" €

For the self-dual Abelian groups one has as associated distributions for the compact
representations (always only where thdunctions are defined)

1 qr(™+ N) h me Z forirrep SO(2)
{G (@2 Fio — m2)L+N } wit { meR forirrep @9 S0Oy(1, 1)

/dq q F(1+ N) efixq — —G(X)(%)N e:ti|xm\
am

G (q2 F |0 _ m2)1+N

—e(x) et M i =
forN=0,1,...
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) N i|xm|
jE/dq Im| T'(1L+ N) e”‘q=|m|( 0 > et

iz (g2 Fio — m2)L+N am? Im|
— e:l:l‘Xm‘, _l:F:.T|])2(m| eii‘xmly-..
forN=0,1,...

and for the noncompa&0Oy(1, 1)-representations

{ 1 qr(l+N)

b/

/dq g1+ N) e ixa _ —E(X)(—ai)N g Ixm

X
—|xm| —|xm|
—e(x) e , ——— €
_ e 2/m|
forN=0,1,...

/dq Im| T'(1+ N) oixd _ |m|< 9 )Ne_xm

-~ am?2

7 (g2 + m)LN Im|
_ 14 |xm| _
Ixm| Ixm|
e , ———— €
= 2m?2
forN=0,1,...

With respect to the sign of the nildimensidhthe residual distributions are used
for

nondecomposable group representatieas N > 0
irreducible group representations <~ N=0
tangent representations (discussed lates» N < 0

For compact groups strictly positive nildimensions cannot occur, they define no
functions on the group

for compact groupN < 0

Residual distributions with strictly negative nildimensioNs= —1, -2, ... do
not lead toG-representation matrix elements. They arise only for groups where
the rank is strictly smaller than the dimension.

Associated to the dipole distribution of an irreducible representation of the
spin groupSU(2) and for compact representations of the position manBaxP)
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are the following distributions

{ 1 dr@2+N) } " me Z forirrep SU(2)
573 - Wi
i72(G* Fio — m?)>N meR forirrep®% SD(2)

/@ Gr+N) e—imzziii”“ei”‘”"
i72 (G2 Fio — m2)2+N r r

% zw eiirlml, etirlmll_._
forN =-1,0,...

3 . 1+N irjm|
i/d—q q|m|.F(2+N) e X4 = 1 2i|m| 9 e
i72 (G2 Fio — m2)2+N om? r

ir|m|

= 1q:|r|m| il
o
forN=-1,0,1,...

and to an irreducible noncompact positi®b(2)-representation

1 Gr@+N) | .. oy
{iJTZ G+ m)zN } with m € R for irrep -+ SD(2)

/@ GL@+N) izg_ X0 (_ 0 e
i72 (G2 + m2)2tN r am? r

0
or
{ 1+r|m| erim grim

:—1, o,...

/d3q Im| T'(2+ N) &% _ o (_i)HN eriml

72 (G2 + m2)ZN am? r
g~rimi 1+r|m|
2|m , e rim e rim
Im r om2
forN=-1,0,1,...

The dlstr|but|ons WI'[hN = —1 lead to spherical wave‘§— and Yukawa po-

matrix elements
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The distributions associated with an irreduciblg2)-representation include
as negative nildimension distributions

gI'(3+ No + N3)

(qg 2) 1+No (qp )2+ N3
q q
No + N3 = —1
_ | (@ —mg)(@s —m3)" (g3 - m)
q qm%' Q§—q g Mot le==2

10. RESIDUAL SUBREPRESENTATIONS

A representation of a symmetric space (Lie groBgontains representations
of subspaces (subgroupd) How does this look for residual representations?
AresidualG-representation with tangent space (Lie algebra) parameters

(XH, x1)
D':G—C g(x)— D'(x) =/d”q I(q) €
is projected to a residudl -representation by integratiofd"Sx, over the com-
plementary space log/H
D} : H — €, h(xy) — D},(Xn)

dn-s . )
with DL(XH) = /(Zn)r?(fs/dnq I(q) €% = /dqu | (qn, 0) €+

With the integration one picks up the Fourier components for trivial tangent space
forms (momentag;, = 0 of log G/H.

10.1. SO(2)x SOy(1,1)-Subrepresentations in
Spin-Position-Representations

The SO(2)-subrepresentations in sp8iJ(2)-representations are given as
follows

irrep SU(2) — rep SO(2), d?x, = d?xy »

/deL/ qr(2+ N) % _ /@ qr@2+N) R

9 1+N
— o +i|xzm|
= —6(X3)(8m2> e
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/d%/ Im| (2 + N) efizazi/d_q MI@EN) g
|7T2 (qZZFIO _ m2)2+N |7T (az:Flo _ m2)2+N

9 1+N eii\X3m\
= |m| T
am m|

and theSQOy(1, 1)-subrepresentations of noncompact positBiX2)-represen-
tations

irrep SD(2) —> rep®™YS0y(1, 1)

/dZXJ_/d3q qr(z"‘r N) e—i)?d — /% q l—‘(24' N) e—iX3q
9 1+N
- —e(x3)<——> g Peml

am?

/d2xlfd3q Im| C'(2+ N) o-i%d /‘@ Im| T'(2+ N) i
7-[2 (q2 + m2)2+N - T (q2 + m2)2+N

9 1+N e—|X3m|
= M{{ ——— B
()

The vector dependencfyefor the sphere is projected to two valugxs) € {£1}
for the hemispheres.

10.2. Time and Position Subrepresentations in Spacetime Representations

The energy—momentum distribution used in the residual spacetime represen-
tations is the principal value part in the decomposition of a complex distribution
into imaginary and real part

1 q 1 q
:IZE 2 2\ (2 22::|:G 2 2\ (2 N2
(9% Fio — mg)(ap — m3) (a5 — mg) (g — m3)
spacetimé(2) - C
1
+ ———08(q” - m}
™

tangent translation&* — C

which is also the decomposition for the representation matrix elements of space-
time D(2) and its tangent spad'. The integrated principal value part has causal
support whereas the integrated Dirac distribution for the particle pole gets both
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spacelike and causal support. The decomposition with respect to the two
singularities
1

(a2 — m) (a2 — m)®

1 1 qz—m2
2 2\ 2 2_m2_ 2 2\ 2
(mg—m3)” Ld 0 (92 —mj)

B 1 ( 1 1 ) 1 1
(mg —m2)?> \@? —m§ g% —mj mg — m3 (g2 — m2)?
is not parallel with the representation of the factorB{2) = D(1,) x SD(2). The
projections to representation matrix elements of the manifold factors are given
by position integration for the causal grolyl,) and by time integration for the
position manifoldSD(2) with Cartan subgrouOy(1, 1), that is by the Fourier
transforms for trivial momentd = 0 and trivial energyyy = 0 respectively

/d*’x ;irrep D (2) — repD(1)
/dxo irrepD (2) — rep SD(2)

/dzxL : rep SD(2) — rep SOy(1, 1)
where one uses
d3x
8
/ dxo / d'q q FB+N)

/ d2x, dxo

€(Xp) cosxgm
- (ifN D L/
om? roor2
—6(X3) e Ixsml
d®x sin/xom|
87 Im|

fdxo /@ I'(2+ N) gxa_ k2 1+N 2e—r\m\
7T3 (qé_m2)2+N 8m2 r

/‘ d2x, dxo g sml
[m|
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This leads for irreducible spacetime representations to

3 .
ds (m3; 1, —m3)(x) = d—q) > zqo > v
7 (ade — mp) (age — M3)
COSXgMy — COSXpM3 [Xo| Sin|Xom3|
= €(Xo) > R
(mg — m%) 2|m3|(m0 - m3)

/ d;o (mo, 1, —m3)(x)

= /d?’q g g xa
- i7T2 =2 2\ (72 2\ 2
(G2 + mG) (G2 + m3)

_ [ (1+r|mo|)e fimol — (1 +r|mg|) e "Imsl— gfimsl }
r

+
r2(mg — m2)? mg — mj
J ey O E R

— /% q —1X3q
I (o + m3) (a2 + m3)®

( )|:eIX3mo — g Ixamg [X3] e Tims|
= —€X3 2 2 2
(m2 —m3) 2|mg| (m§ — m3)

The measure of the invariants for an irreducible spacetime representation
for D(2) : p(M§, M3) = §(M& — m3)8(MZ — mj)

is projected to measures for the representation of the two factors. Th®(ipe
subrepresentation with the measure

s(m?—mg) —s(m? —mj)  &'(m? —mj)

for D(12) : po(M?) =
(mg —m3)? mg — ms

contains matrix elements of reducible nondecomposable representations for the
nonparticle dipole an3.

The linear combinations occurring in the positl®B(2)-projections of space-
time D(2)-representations are matrix elements of measBE¥a)-representations
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involving the difference of two Yukawa potentials

5 e Tlmol _ g—rims| /m§ e Imi
r m3 Im

e—r|m|

= /Oodrnzz?(m2 — mg)&(m§ — m?)
0

Im|
The measure for th8D(2)-subrepresentation reads

#(m? —md)(mi —m?)  §(m? —mj)

for SD(2) : ps(m?) = —
(m2 — m2)? mg — m§

11. RESIDUAL TANGENT DISTRIBUTIONS

The residual tangent distributions for an irreducible symmetric space (group)
representation will be defined by the associated distributions with a simple pole,
that is, for minimal negative nildimensioN < 0, and a trivial invariant. They
arise as the inverse differential operators in the Lie algebra action representing
differential equations of motions.

The tangenR distributions for the Abelian groups have trivial nildimensions
N = 0 for the non-self-dual ones

|09U(1):} s~ L1 jg dg1

_ eitq — 1
2irq

for the self-dual compact representations

log SO(Z)Z} 1 q / dlq q

el — (1)

logSOu(L, 1):| iz g?Fio" J ix q?Fio

and for the self-dual noncompa8y(1, 1)-representations

1 q dig a
|Og S()O(l, 1) Em, /‘qu n 02 e 1Xq = —E(X)

For the nonabelian rank 1 spaces the residual tarig@distributions come
with nildimensionN = -1

log SU(2): i L /@ § st _ 21
logSD2):| in2G?Fio—m?’ [ iz2G2Fio I
and in the noncompact case
1 4 d g - X
logSD(2): — ——, — 1 eXa__o_
0gSD(2) i72 G2+ 0? /|712q2+oZe r3
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They lead both to the Coulomb force with the Cartan subalgebra projection

d?x
f Tt 2% _ ()

The residual tangentspacetimédistributions have nildimensiaNg + N3 = —2

9 [ g X (X
IogD(2) el /in3q§e _26 )

d3x
8 €(Xo)
4 _ .
with projections /dxo /d_gﬂz =X
4 qP r3
/dzx L [dx €(Xa)

12. DEFINING REPRESENTATIONS FOR TIME, POSITION,
AND SPACETIME

Spacetime, particles, and interactions cannot be taken as separate concepts.
Spacetime is known via interacting particles and the interactions of particles can
be understood only in spacetime.

This connection will be translated into the mathematical language with the
concept of a defining representation, familiar from Lie groups. For example, the Lie
groupSU(n) is defined by the automorphisms of a vector space C" compatible
with a scalar product—the linear space and the operating group merge in the concept
of the defining representation.

In addition to one defining representation for some Lie groups there exist
fundamental representations that reflect the rank and the number of independent
invariants. For example, the Lie symme8Y(r + 1) one has fundamental rep-
resentations whose highest weights are basic vectors fdZ-thedule with all
weights. The products of a defining representation may build the fundamental
ones, as in the case 8fJ(n) via the totally antisymmetric Grassmann powers of
the defining vector space.

12.1. The Harmonic Oscillator—Defining a Compact Time

The irreducible timeD(1) representation in the groug(1) as seen in the
guantization for creation and annihilation operators {),af a harmonic Fermi
or Bose oscillator with frequenciesm € R

D(1) 5 € > €™ = [u*, u].(t) € U(1)

defines a compact model for time with the invariﬁtas characteristic time unit.
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The adjoint action with the Hamiltonian as the represented Lie algebra basis
defines the time translations in the equations of métion

du ;
— =[iH,ul=imu, ut) = €'u
TR RS El ¢
2 dU* H Sk H * s« —jitm, *
it =[iH,u] = —imu*, u'(t)=e""Mu

The operators ard(1)-isomorphic time orbits in the-Somorphic representation
spaces

uu:DA)— Vv,V =C

The product representatiorgd™ g™z = gt(Mm+m) generate the familiar
equidistant time weights (eigenvalues, frequencies) for the quantum oscillator —
{Zm| Z € Z} for Bose andZm | Z = 0, +1} for Fermi — which, for the states,
are projected on the positive values.

12.2. The Exponential Potential—Defining a Noncompact Position

An indefinite unitary representation of the noncompact Procrustes dilatation
groupSOy(1, 1) for dual operators (d;*#lof Fermi or Bose type with eigenvalues

+meR

SO(L, 1) 5 (eox g) > (eoxm eSm)
_<Mﬁmi [d, d].
C\[dr, A [d, &

defines a faithful model for the position space Cartan subg&@yl, 1) with the
invariantﬁ as characteristic length unit.

The translations are implemented with the basis

)(x) e sy, 1)

[d, d'] ? =[iD, d] = —md, dx) = e~"d
D=im=5= =4
5y = [iD, ] =md", d"(x) = e

The operators are noncompa@(l)-isomorphic dilatation orbits in the
C-isomorphic representations spaces

d,d:SOy(1,1)— V,VI =C

10y without argument means u(0), that is, for the trivial translation.
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The product representations (convolutions) lead to exponentials with the
eigenvaluegzm| z = 0, £1} for Fermi and{zm| z € Z} for Bose.
A representation matrix element of the symmetric space position model
SD(2) = SL(C?)/SU(2)
. oX dy aq
SD(2)3 €% > ——— g "Im =/.—7~ e X =
2> A i72 (G2 4 m2)?

with Pauli matricess defines a noncompact position with a characteristic length
ﬁ (interaction range), implemented by-@alued Pauli spinor fields on the posi-
tion manifold

= {¥", ¥}(X)

UA YUaiSDR)— V, VT =¢? A=1,2

The Cartan subgroupOy(1, 1) is represented by an indefinite unit&i(1, 1)-
representation matrix elemegt’ ™.

The product representations (convolutions) add up the noncompact invari-
ants{njm| | n =1, 2,...} in the exponential and are multiplied with spherical
harmonics of degregJ | 2J =0, 1, 2,...} for the representation of the sphere

SO3YSOQ2).

12.3. Defining Spacetime with Two Invariants
The representation matrix element
201q;
|n3 m2) (a2 — m2)>
(08 — mg) (o — mé)

defines symmetric spacetime (Saller, 1997). The two invariafindm? charac-
terize time and position and give units for particle masses and interaction lengths.
The representation is implemented BRp@lued Weyl spinor fields (Heisenberg,
1967)

D(2) 5 9 (xO)x > / X — ¢(xo)(T*, T)(x)

A WD)~ V,VI=C? A=1,2

It involves two conjugations—a definité(2)-conjugation for the tim®(1)-
representation and an indefinitd(1, 1)-conjugation for the positiolsD(2)-
representation. Therefore only the particle pole can be endowed with an addi-
tional asymptotic positive unitary spacetime translation representation structure
by adding a real on shell contribution vﬂm ﬁ A parametrization with

g?Fio—mg
creation and annihilation operators has to take care of the indefinite conjugation
involved.

The product representations of the defining spacetime representation will
give rise to product invariants that, in the case of an accompanying definite unitary
conjugation, can be identified with particle masses for bound states. To carry out
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such a program explicitly, that is to compute a mass spectrum from the spacetime
defining two invariants, the representation characteristic i%g%tlbas to be deter-

mined as well as the relevant normalization factors to be Used in the eigenvalue
equations for the product representation invariants.
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